
Journal of Contemporary Management 
 Submitted on 23/12/2014 

Article ID: 1929-0128-2015-02-01-17 
 Stella Ma, Elizabeth A. Stasny, James A. Tackett, and Douglas A. Wolfe 

~ 1 ~ 
 

Confidence Intervals and Hypothesis Tests for a Population 
Mean Using Ranked Set Sampling: An Auditing Application 

 
Stella Ma (Honors Accounting Student) 

Fisher College of Business,  The Ohio State University 
1958 Neil Avenue,  Columbus, Ohio  43210, USA 

E-mail:  ma.459@osu.edu 
 

Professor Elizabeth A. Stasny, Ph.D. 
Department of Statistics,  The Ohio State University 

1958 Neil Avenue,  Columbus, Ohio  43210-1247, USA 
Tel: (614) 292-0784   E-mail: eas@stat.osu.edu 

 
Professor James A. Tackett, CPA, CFE, Ph.D. (Correspondence author) 
Department of Accounting and Finance,  Youngstown State University 

One University Plaza,  Youngstown OH, 44555-0001, USA 
Tel: (330) 847-0877   E-mail: jamesatackett@aol.com 

 
Professor and Chair Emeritus Douglas A. Wolfe, Ph.D. 

Department of Statistics,  The Ohio State University 
1958 Neil Avenue,  Columbus, Ohio  43210-1247, USA 

Tel: (614) 292-9565   E-mail: daw@stat.osu.edu 

Abstract:  Balanced ranked set sampling (RSS) provides a systematic way to use additional 
information readily available in a population to enable a researcher to select sample observations for 
measurement that yield a more complete picture of the entire population (and thereby greater 
precision in associated statistical analyses) than is possible by simple random sampling (SRS). This 
approach is particularly valuable when the readily available information for instituting RSS to select 
the sample units is easy to access but the actual measurement of the quantity of interest on the 
selected sample units is time consuming (and, hence, costly) or difficult to obtain.    This can 
certainly be the case in many auditing applications, including inventory audits, receivable 
confirmations, etc.  In this study we describe how to use balanced RSS to construct confidence 
intervals and test associated hypotheses about a population mean in an inventory valuation setting. 
Computer simulation is used to compare the accuracy and precision of these RSS confidence 
intervals (and associated hypothesis tests) with the corresponding confidence intervals and 
hypothesis tests under SRS. Mathematical formulas are also provided for the calculation of RSS 
confidence intervals for auditors working in the field. Results demonstrate that the confidence 
intervals generated under RSS are up to 35% narrower than those derived from SRS. The narrower 
confidence intervals imply more powerful hypothesis tests without increasing sample sizes. 
Accordingly, audit sampling cost is significantly lower when using RSS instead of SRS. 
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JEL Classifications: C12, C13, C83, and M42 

Abbreviations:  MUS = Monetary Unit Sampling;  RSS = Ranked Set Sampling;  
                            SRS = Simple Random Sampling 

1. Introduction 
The conversion to digital documentation by modern businesses has changed the way auditors 

approach attesting to financial statements. The traditional paper trail of business records has been 
replaced with data entries on computer hard drives and servers. Overall, this is a positive 
development for auditing because sampling error has been reduced–especially when auditing 
internal control compliance–since auditors now have the luxury of evaluating population parameters 
rather than mere statistics. In such situations, computer programs can examine and tabulate the 
results of every transaction or event, and creating these summaries is nearly cost free when 
compared to traditional methods. Nevertheless, statistical sampling still plays an important role 
when auditors evaluate costly or difficult to observe evidence, such as the physical examination of 
inventories; property, plant, and equipment; accounts receivable; and accounts payable. 

Modern audit sampling uses a variety of methods, including simple random sampling, 
stratified sampling, and monetary unit sampling (AICPA, 2008; Bailey, 1981; and Arens et al., 
2012). The current popularity of monetary unit sampling may be due in large part to the AICPA 
endorsement given in Audit Guide: Audit Sampling (2008) rather than being based on any research 
demonstrating its superiority over other methods. Other sampling methods, however, still play an 
important role in current auditing, especially the time-honored classical methods based on simple 
random sampling (SRS). 

There is, however, a theoretical paradox in the application of SRS to auditing financial 
statement account balances. An alternative sampling technique, known as ranked set sampling 
(RSS), is considerably more efficient in that it provides increased statistical precision for a given 
audit sample size. The paradox lies in the fact that modern auditing theory and practice does not 
address this superior audit sampling methodology (Arens et al., 2012; Messier et al., 2014; and 
Louwers et al., 2014). Based on computer simulations, Gemayel et al. (2012) showed that balanced 
RSS is always superior to SRS in terms of obtaining a sample that is more representative of a given 
accounting population. This more representative sample would enable auditors to reduce sample 
sizes without sacrificing audit confidence levels. Such a theoretical result is important, yet there are 
still unanswered questions regarding the implementation of RSS in auditing practice: the procedure 
for obtaining confidence intervals using RSS in audit settings, and the formula for obtaining an ex-
ante sample size using the RSS technique.  

This study describes the methodology for constructing confidence intervals and testing 
associated hypotheses when applying balanced RSS to the audit problem of testing financial 
statement account balances. Computer simulation is used to compare the accuracy and precision of 
these confidence intervals to those that would be attained under SRS. A mathematical formula is 
also provided for the calculation of RSS confidence intervals for auditors working in the field. 
Results demonstrate that RSS confidence intervals are up to 35% narrower than those derived from 
SRS. Accordingly, audit sample sizes (and audit costs) can be significantly reduced simply by 
switching from SRS to the RSS methodology.  
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2. Ranked Set Sampling 
According to classical sampling theory, SRS provides external validity to experiments and 

studies because the random selection of sample units is the best way to obtain a sample that is truly 
representative of the population (Fisher, 1925). In the 1950s researchers discovered an alternative to 
SRS that significantly increased the representativeness of statistical samples. This new technique, 
RSS, would consistently provide greater levels of precision for a given sample size than SRS 
whenever there was a convenient concomitant (ranking) variable that could be used to help select 
the sample (McIntyre, 1952, 2005). The superiority of RSS over SRS is a result of the additional 
structure imposed on the data collection process by using the concomitant variable in selecting 
sample units. Patil (2002) points out that as long as the concomitant variable is reasonably 
correlated with the variable of interest, then samples selected via RSS will provide greater statistical 
precision than those afforded by SRS. 

Early applications of RSS involved the US forestry service and their study of timber valuations 
on land. Visual estimation of the heights of trees were used as the concomitant variable, and RSS 
proved clearly superior to SRS in terms of minimizing required sample sizes in these forestry 
studies. Nevertheless, the value of the RSS methodology is related to the accuracy of the 
concomitant variable, and visual estimation of tree height could be prone to error based on 
observational circumstances and the talent of the observing party. This concomitant variable error 
is, however, almost nonexistent in financial statement audit applications because the concomitant 
variable (the book value of the account according to client records) is available to the auditor cost-
free and is highly correlated with the audited (true) value. In fact, one could argue that auditing 
applications of RSS produce the most accurate concomitant variable rankings possible in practical 
statistical sampling settings. The clear superiority of RSS over SRS for statistical auditing has 
been established through computer simulations which show required audit sample sizes for a given 
precision level are much smaller when auditors use RSS (Gemayel et al., 2012). 

Paradoxically, the auditing profession has never investigated RSS for use in statistical audit 
sampling. The authors theorize that part of the explanation lies in the previously described problems 
of inertia in the evolution of audit sampling and the official endorsement of monetary unit sampling 
(MUS) by the AICPA. Additionally, applying RSS to audit sampling requires the widespread 
availability of computers and software that were not available at the time when MUS was selected 
by the profession as the sampling method of choice. 

Table 1. RSS Numerical Example, Set Size Equal 3 
The structure for RSS is well described in a 

number of sources (see, for example, Gemayel et 
al., 2012; Wolfe, 2012). The RSS process can be 
intuitively represented with the following simplified 
numerical example. Suppose an auditor is selecting 
a sample from the accounts receivable subsidiary 
ledger for audit confirmation. The first step would 
be to select a set size for purposes of drawing the 
sample. Typically, set sizes are between three and 
ten items for most RSS applications; however, this 
example will use a set size of three because it 
provides an easily understandable visualization of 
the RSS process. Having selected a set size of three, 
the auditor would draw 32 or nine accounts at 
random from the list of accounts in the accounts receivable subsidiary ledger (if the set size were 

Nine Simple Random Sampling Values 
680.91 130.38 329.21 
178.52 478.43 717.36 
794.18 629.45 213.33 

Above Values Ranked by Rows 
130.38 329.21 680.91 
178.52 478.43 717.36 
213.33 629.45 794.18 

Diagonal Values are in RSS Sample 
130.38 478.43 794.18 



ISSN:1929-0128(Print); 1929-0136(Online) ©Academic Research Centre of Canada 

~ 4 ~ 
 

five, then 52 or 25 accounts would have been drawn, and so forth). The nine book values selected 
would be placed at random in a 3x3 matrix (if the set size were five, then a 5x5 matrix would be 
used). Next, each row of the matrix is sorted in increasing order; the three accounts whose book 
values appear on the diagonal are selected to be in the auditor’s sample. This example is illustrated 
in Table 1. The auditor would then flag these three items (130.38, 478.43, and 794.18) for 
confirmation. The off-diagonal accounts would be discarded. 

The above example represents a single RSS cycle for the selection of three accounts to be 
audited. The auditor would repeat this process until the desired sample size is achieved. If the set 
size is equal to k, and the number of cycles is m, then the final sample size can be represented as n = 
m*k accounts. Thus, in the case with a set size equal to three, the final sample size would be some 
multiple of three depending on the desired level of precision.  In actual auditing practice set sizes 
larger than three would be used because they provide more information about the characteristics of 
the population. The RSS sampling process would be tedious if performed manually; however, 
computer software applications can effortlessly extract the sample in a matter of seconds because 
the ranking variable (client book value) is readily available and the selection process itself follows a 
simple algorithm. 

Intuitively speaking, RSS is superior to SRS because the ranking process forces the selection 
of a more representative sample of the population than is achieved with SRS. The structural 
advantage of RSS over SRS can be understood by recognizing that RSS uses readily available 
ranking information from m*k2 accounts, of which only m*k accounts are actually audited. Thus, 
RSS is using considerably more information than SRS in selecting a representative sample. The 
strength of this advantage will increase as the accuracy of the client book values as a ranking 
variable for actual values increases. Conversely, in a worst-case scenario where there are 
widespread discrepancies between audited and book values, the precision level of RSS would 
decline but never fall below the level of precision achieved with SRS. In the vast majority of actual 
auditing cases, the rank correlation between audited and book values will be high. Accordingly, 
RSS will usually achieve superior precision over SRS, and will never yield inferior results to SRS. 

3. RSS for Verifying Account Balances 
RSS is best applied to auditing problems when assessing the true value of an account balance 

is time-consuming. Accounts such as inventory; accounts receivable; property, plant, and 
equipment; and accounts payable usually fall into this category. The auditor will draw a sample 
from these accounts through their respective subsidiary ledgers, and then proceed with on-site 
inspections, recalculations, confirmations, and other auditing procedures. 

Table 2. Descriptive Statistics for the Audited 
    Values of the Inventory Data 

This study applies RSS to a population of 5,000 different 
inventory items derived from the financial records of a retail 
clothing store.  (The full data set of 5,000 book values and 
audited values for these financial records are available upon 
request from the authors.) Each of these 5,000 items represents 
the inventory value of a particular retail item. The non-
normality of accounting populations is well documented in the 
fraud literature, and accounting numbers that have not been 
artificially restricted or manipulated will tend to follow 
Benford’s Law (Nigrini, 2011). Accordingly, the data set was 
checked for conformity to Benford’s Law using Nigrini’s Mean 

Mean 375.57 
Median 376.30 
Standard 
Deviation 

112.69 

Minimum 17.97 
Maximum 771.60 
Total 1,877,836.72 
Count 5,000 
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Absolute Deviation test and the chi-square test for distribution conformity; both tests show strong 
conformity to Benford’s Law. Thus, this data set would be a reasonable representation of what an 
auditor would expect to see in an actual inventory valuation setting.  We choose inventory for our 
study because it is one of the more commonly manipulated accounts in financial statement frauds 
(Albrecht et al., 2013; Wells, 2011). Table 2 provides some descriptive statistics for the population. 

The total shown in Table 2 is assumed to be the audited or true value of the total inventory 
account. Therefore, the subsidiary numbers that comprise this sum are also audited values. In 
reality, these numbers would be unknown unless every item in the population were audited. Using 
the audited values as a base, a fraudulent data set was created by randomly overstating individual 
inventory values to simulate a typical inventory fraud. In the 5,000 accounts, the number of 
overstated accounts is 500, or 10% of the accounts. The amount of overstatement for each 
fraudulent account was generated using random numbers, with an average overstatement factor of 
twice the true (audited) value. The fraudulent data set represents modest inventory overstatements, 
consistent with a company looking to boost its earnings by a material amount, yet without attracting 
inordinate attention. Table 3 summarizes the fraudulent data set considered in this paper. 

Table 3. Features of the Fraudulent Data Set 

4. Confidence Intervals and Hypothesis Tests for 
    the Population Mean Using Data from a RSS 
In a previous paper, Gemayel et al. (2012) described how to use RSS data to estimate the mean 

of an auditing population of interest.  They used extensive simulations to demonstrate how RSS can 
lead to dramatic improvement in precision over SRS for a given sample size or to substantial 
reduction over SRS in sample size needed to achieve a desired precision level. To obtain those 
results, the simulation process was replicated 5,000 times to provide an accurate estimate of the 
standard deviation of the RSS sample mean X RSS  to evaluate its precision relative to that of the 
SRS sample mean X SRS.  In an auditing application, however, we cannot use simulation for this 
purpose, since we have available only a single RSS set of data.  In such an application, we are 
primarily interested in using the observed RSS data set to construct confidence intervals and 
conduct hypothesis tests about population parameters of interest, with the goal of reaching a 
statistical conclusion as to whether or not the population contains fraudulent entries and, if so, some 
statistical indication as to both the percentage of fraudulent entries and the magnitude of the fraud. 

In Appendix A, we provide the statistical details for obtaining an approximate 100(1-α)% 
confidence interval for the mean µ of a population.  The expression for this approximate confidence 
interval is presented in equation (9) in Appendix A.  For the data setting discussed in Section 3 we 
are interested in two population quantities, namely, the total amount of fraud in the book value 
entries and the percentage of book value entries that are fraudulent.  Let µF denote the average 
amount of fraud per account in the financial records of the retail clothing store (so that 5,000µF 
represents the total amount of fraud in the financial records) and let pF denote the percentage of 
fraudulent accounts in the financial records. 

Percentage of  
Fraudulent 
Accounts 

Number of  
Fraudulent 
Accounts 

Total Inventory 
Book 
Value 

Total Inventory 
Audited 
Value 

Percentage  
Overstatement 

 

10% 500 2,053,578.34 1,877,836.72   9.4 
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In this section we illustrate how to use a single RSS from this population to obtain 
approximate 95% confidence intervals for both µF and pF.  Details for the collection of the RSS and 
the necessary calculations to obtain these two confidence intervals are provided in Appendix B.  We 
show here only the principal steps leading to the two confidence intervals.  

As noted in Appendix B, we applied the R command RSS(k, m, x) in the R package NSM3 
developed by Schneider (2014) for the third edition of Hollander, et al. (2014) to the previously 
discussed population of 5,000 inventory items from the financial records of a retail clothing store.  
For illustrative purposes, we choose a set size of k = 10 and number of cycles m = 40, so that the 
total number of audited values in our RSS is n = mk = 400.  (Since the population of inventory 
values contains only 5,000 entries, we used sampling with replacement between each selection to 
generate our mk2  = 4,000 sets to obtain the 400 observations in the RSS.) The two quantities of 
interest here are whether or not an account is fraudulent (IF = 1 if the book value is larger than the 
audited value for the account, = 0, otherwise) and the amount of fraud in the account (given by ZF = 
BV – AV, the difference between the book value BV and the audited value AV).  A detailed listing of 
this information for the RSS observations, cross-tabulated by the cycle number and the judgment 
rank order, is provided in Appendix B.  

We see from Appendix B that the k = 10 individual judgment rank sample means for the 
amount of fraud in this RSS are 

   ,0,0,0,0,0 ]5[]4[]3[]2[]1[ ===== FFFFF ZZZZZ  

       1955.260,2055.69,324.30,179.6,0 ]10[]9[]8[]7[]6[ ===== FFFFF ZZZZZ  

The corresponding k = 10 judgment rank sample proportions for the presence of fraud in this 
RSS are 

   ˆ p F[1] = 0, ˆ p F[2] = 0, ˆ p F[3] = 0, ˆ p F[4] = 0, ˆ p F[5] = 0,  

    70.ˆ,225.ˆ,10.ˆ,025.ˆ,0ˆ ]10[]9[]8[]7[]6[ ===== FFFFF ppppp  

 Thus, from equation (1) in Appendix A, the RSS estimate of the average amount of fraud in 
the population of inventory values is given by 

   µ̂F = ZF , RSS =
1

10
ZF[r ]

r=1

10

∑ = $36.5904 , 

so that the RSS estimate of the total amount of fraud in the population is 5,000 ˆ µ F  = 
5,000($36.5904) = $182,952.  In addition, using the fraud indicator data in equation (1), the RSS 
estimate of the percentage, pF, of fraudulent accounts in the population of inventory values is given 
by 

   105.ˆ
10
1ˆ

10

1
][ == ∑

=r
rFF pp  (i.e., 10.5%). 

Using the sample estimates 2
]10[

2
]1[ ,, FF SS K  for the variances of the k individual judgment 

order statistics (details in Appendix B), we estimate the variance of ˆ µ F = Z F , RSS to be 

  Var
^

[Z F, RSS ] =
1

40(10)2 SF[r ]
2

r=1

10

∑ =
1

4000
(64711.95) =16.178 
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Similarly, using the sample estimates 2
]10[

2
]1[ ,, FF TT K  for the variances of the k individual 

judgment sample percentages (again details in Appendix B), the estimate of the variance of ˆ p F  is 
given by 

   Var
^

[ ˆ p F ] =
1

40(10)2 TF[r]
2

r=1

10

∑ =
1

4000
(.51154) = .0001279. 

We are now in a position to use equation (9) in Appendix A to obtain the desired 95% 
confidence intervals for µF  and pF .  With α = .05, the upper .025 percentile for the standard 
normal distribution is z.025 =1.96 and an approximate 95% confidence interval for the average 
amount of fraud, µF , in the population of inventory values is  

),4739.44,7069.28(8835.75904.36178.1696.15904.361
1

2
][22/ =±=±=⋅± ∑

=

k

r
rFRSS S

mk
zZ α  

so that an approximate 95% confidence interval for the total amount of fraud in the population of 
inventory values is ( 5,000($28.7069), 5,000($44.4739) ) = ($143,534.50, $222,369.50).  We note 
that in this example the true amount of fraud in the population, namely, $175,741.62, correctly 
belongs to this approximate 95% confidence interval and the associated approximate α = .05 
hypothesis test would correctly reject the null hypothesis of no fraud in the accounts, since 0 does 
not belong to the confidence interval.    

Similarly, an approximate 95% confidence interval for the percentage of fraudulent accounts, 
pF , in the population of inventory values, is 

 ),12717.,08283(.02217.105.0001279.96.1105.1ˆ
1

2
][22/ =±=±=⋅± ∑

=

k

r
rF T

mk
zp α  

so that we are 95% confident that between 8.283% and 12.717% of the accounts in the population 
are fraudulent. As with the total fraud, the true percentage of fraudulent accounts in the population, 
namely, 10%, correctly belongs to this approximate 95% confidence interval and the associated 
approximate α = .05 hypothesis test would correctly reject the null hypothesis of no fraudulent 
accounts, since 0% does not belong to the confidence interval.    

5. Assessing the Advantage of RSS over SRS  
In Section 4 we presented methodology for obtaining approximate confidence intervals and 

hypothesis tests about population means and proportions using RSS data.  In this section we use 
simulation to illustrate the advantage of using this RSS approach as opposed to standard procedures 
based on SRS data with the same sample size.   We compare both the lengths of the confidence 
intervals and the simulated powers of the associated tests. For our study, we used a total sample size 
of n = 400 for both the SRS and RSS procedures and the four different set sizes k = 5, 10, 20, and 
25 for collecting the RSS observations.  (Again we used sampling with replacement between each 
selection to generate our RSS sets to obtain the 400 observations in each of our samples. The R 
code used in these simulations is available upon request from the authors.)  This simulation process 
was repeated 5,000 times and the RSS and SRS approximate 95% confidence intervals for µF , the 
average amount of fraud per account in the financial records of the retail clothing store, and pF, the 
percentage of fraudulent accounts in the financial records were obtained for each sample. (Again, 
remember that 5,000 µF  represents the total amount of fraud in the records.)  Figure 1 below plots 
the averages of the lower endpoints and the upper endpoints of these 5,000 confidence intervals for 
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µF  separately for each of the set sizes k = 1, 5, 10, 20, and 25.  Figure 2 plots the same averages for 
the associated 5,000 confidence intervals for pF .  Note that SRS corresponds to set size k = 1. 

 
Figure 1. Average Approximate 95% Confidence Intervals 

For Average Amount of Fraud 
 

 
Figure 2. Average Approximate 95% Confidence Intervals 

        For Percentage of Fraudulent Accounts 
 
 

 The purpose of Figures 1 and 2 is to demonstrate that the lengths of the RSS confidence 
intervals for µF  and pF  are, in both cases, decreasing functions of the set size k for a given total 
sample size of n = 400 and all of the RSS intervals are shorter than their comparable SRS 
confidence intervals (k = 1).  Note, however, that the greatest reduction in length has already 
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occurred by set size k = 20 and we attain only diminishing marginal returns from increasing the set 
size further.  

To get a more refined picture of how much better (i.e., shorter) the RSS confidence intervals 
are than their SRS counterparts, we also plot the ratios of the average lengths of the approximate 
95% RSS confidence intervals to the lengths of the corresponding SRS counterparts.  These results 
are pictured in Figures 3 and 4 for the confidence intervals for µF  and pF , respectively. 

 
Figure 3. Plot of Ratios of Average Lengths of Simulated RSS and SRS 95% 

Confidence Intervals for Average Amount of Fraud 

 

 
Figure 4. Plot of Ratios of Average Lengths of Simulated RSS and SRS 95% 

       Confidence Intervals for Percentage of Fraudulent Accounts 
 

 Figures 3 and 4 demonstrate again the merits of RSS in producing narrower confidence 
intervals (as expected given the results we discussed in Section 4 and Appendix A), as well as the 
diminishing marginal returns from continuing to increase set size. For example, with overall sample 
size n = 400, an approximate 95% confidence interval for the population mean µF  using RSS with 
set size k = 20 is, on average, less than three-fourths as wide as the approximate 95% confidence 
interval for µF  using SRS. Increasing the set size to k = 25 yields only a small additional reduction 
in the length of the confidence interval.  Similar comments apply to the approximate 95% 
confidence intervals for pF  based on RSS and SRS. 
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We also compare the empirical powers of the SRS and RSS hypothesis tests associated with 
their respective confidence intervals. We carried out 5,000 simulations each for all appropriate 
combinations of overall sample sizes n = 20, 50, 100, and 400 and the same set sizes k = 1, 5, 10, 
20, and 25.  (Once again, remember that SRS corresponds to set size k = 1.)  For each of the 5,000 
simulations, we recorded whether the associated confidence intervals for µF  and pF  contained the 
null values of µF = 0, corresponding to no fraud in the recorded book values, or pF = 0, also 
corresponding to no fraud in the recorded book values, respectively.  In Tables 4 and 5 we report 
the numbers of our simulated confidence intervals that led to rejection of µF = 0 (did not contain 0) 
or pF = 0 (did not contain 0), respectively, for the four RSS configurations with k = 5, 10, 20, and 
25 and the SRS setting (k = 1).  (Thus, dividing the entries in Tables 4 and 5 by the number of 
simulations, 5,000, provides us with empirical power estimates for the associated hypothesis tests.) 

Table 4. Number of Rejections (Empirical Power) of H0: μF = 0 
for 5000 Simulations from the Fraudulent Data Set  

k 
N 

1 5 10 20 25 

20 696 (.1392) 1169 (.2338) 1985 (.397) NA NA 
50 3675 (.735) 3884 (.7768) 4245 (.849) NA 4600 (.920) 

100 4951 (.9902) 4979 (.9958) 4995 (.999) 4999 (.9998) 5000 (1) 
400 5000 (1) 5000 (1) 5000 (1) 5000 (1) 5000 (1) 

Table 5. Number of Rejections (Empirical Power) of H0: pF = 0 
for 5000 Simulations from the Fraudulent Data Set  

k 
N 

1 5 10 20 25 

20 696 (.1392) 1517 (.3034) 1998 (.3996) NA NA 
50 3719 (.7438) 4225 (.845) 4252 (.8504) NA 4686 (.9392) 

100 4962 (.9924) 4980 (.996) 4995 (.999) 4999 (.9998) 5000 (1) 
400 5000 (1) 5000 (1) 5000 (1) 5000 (1) 5000 (1) 

 
 
 As expected (since the SRS confidence intervals are, on average, longer than the 
corresponding RSS confidence intervals), the hypothesis tests of H0 : µF = 0 and H0 : pF = 0 
associated with the RSS intervals are always at least as powerful as the corresponding tests 
associated with the SRS intervals.  The empirical power for the RSS procedure is also an increasing 
function of the set size k, in agreement with the average lengths of the associated confidence 
intervals.  Of course, all of the RSS procedures and the SRS procedures do extremely well for the 
larger sample sizes (n = 100 and n = 400), but there is a distinct advantage for the RSS procedures 
for the smaller sample sizes (n = 20 and n = 50).  

6. Implications and Recommendations for Auditing 
We have demonstrated both theoretically (in Appendix A) and empirically (in Section 5) that 

RSS can lead to much more precise estimates of either a population mean or a population 
proportion than a SRS of the same size.  RSS also produces significantly narrower confidence 
intervals and more powerful hypothesis tests for both parameters.  The degree of improvement 
possible through RSS depends, of course, on the reliability of the judgment rankings that lead to the 
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RSS data.  In the fraudulent inventory account data example in this paper we used the easily 
obtained book values to perform these judgment rankings and select which accounts to audit for the 
true inventory values. Since the recorded book value is highly correlated with the true inventory 
value, these judgment rankings were quite accurate and led to the collection of a RSS that contained 
more information about the fraudulent nature of the accounts than could be obtained from a SRS 
without the aid of this additional information.  How much improvement can be realized from using 
RSS instead of SRS in other settings depends very much on how reliable a mechanism is available 
for obtaining the relevant judgment rankings.  The bottom line, however, is that inferences about 
population means or proportions based on RSS can never do any worse than inferences based on a 
SRS of the same size.  This enables the use of RSS procedures with smaller sample sizes than 
would be necessary using SRS procedures to obtain the same effectiveness (precision of estimates, 
length of confidence intervals, power of tests) when making inferences about a population mean or 
proportion. 

The error rates introduced into the inventory data population used in this study represent 
realistic attempts to materially overstate the value of inventory in a financial statement fraud. These 
types of fraudulent manipulations are commonplace whenever corporate management is under 
pressure to boost the bottom line (Albrecht et al., 2013). Policy implications would include the need 
to be alert to the possibility of inventory overstatements (or understatements for an income tax 
evasion scheme) whenever there are material weaknesses in internal controls related to the 
revenue/inventory cycle. 

We note that it would also be of interest to compare RSS directly with MUS.  Such a 
comparison, however, would need to include a detailed discussion of the theoretical underpinnings 
for MUS to provide the proper context for the comparison, and the scope and magnitude of such an 
investigation warrants a completely separate manuscript. 

 

Appendix A: Statistical Development 
In a previous paper, Gemayel et al. (2012) gave a heuristic argument for the advantage of RSS 

over SRS, by noting that RSS uses easily-obtained ranking information from 2km  units to obtain 
km  measurements, whereas SRS is only concerned with those km  units that happen to be 

included in the sample, and makes no use of ranking information whatsoever. We now provide a 
more rigorous argument for this advantage. 

The first step in understanding the potential of RSS is to visualize the different judgment ranks 
as their own hypothetical populations.  We can think of each of these hypothetical populations as 
having its own mean and variance.  The RSS sample mean X RSS is then simply the average of the k 

individual judgment rank sample means, which are given by X r[ ] =
1
m

X r[ ] i
i=1

m

∑ , for r = 1, …, k, 

where X[r ]i is the ith observation on the rth judgment rank; that is,   

   [ ] [ ]∑∑∑
== =
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r
r

k
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i
irRSS X

k
X

mk
X

11 1

11                             (A1) 

Now, let [ ]rµ  and [ ]
2
rσ  denote the mean and variance of the distribution for the rth judgment 

rank, r = 1, …, k.  Expressions for [ ]rµ  and [ ]
2
rσ  were initially obtained by Dell and Clutter (1972) 

and further developed, for example, in Mode, Conquest, and Marker (1999) in the context of 
sampling costs in ecological research.  Although our contribution in this paper lies in the practical 
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application of RSS to real-world auditing situations, we choose to include the short derivations of 
both [ ]rµ  and [ ]

2
rσ  here as well for completeness of the discussion.  Since the mk RSS observations 

are mutually independent, it follows from standard results for sums of independent random 
variables that  
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and 
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It can be shown that the average of the individual judgment rank population means is equal to 

the overall population mean (that is, 
1
k

µ[r ]
r=1

k

∑ = µ), so that X RSS is an unbiased estimator for the 

population mean µ.  This relationship does not, however, carry over to the variances.  Instead, it can 
be shown that the overall population variance σ2 can be decomposed as follows:  

    [ ] [ ]( )∑∑
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r
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r
r kk 1

2

1

22 11
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The first term on the right-hand side of (A4) represents within-rank variability, while the 
second term measures the discrepancy between the means of the judgment ranks and the overall 
population mean µ , thereby accounting for between-rank variability.  

Let SRSX  denote the mean of a (generic) SRS of the same size kmn =  as our RSS. The 

variance of this estimator is given by the well-known formula V ar XSRS =
σ 2

n
=

σ 2

mk
. Combining 

this expression with the results in (A3) and (A4) yields  

V ar[XSRS ] =
σ 2

mk
=

1
mk2 σ r[ ]

2

r=1

k

∑ +
1

mk2 µ r[ ] − µ( )2

r=1

k

∑ = Var[XRSS ]+
1

mk2 µ r[ ] − µ( )2

r=1

k

∑ .      (A5)

     

Since 
1

mk 2 µ r[ ] − µ( )2

r=1

k

∑ is a non-negative quantity, it is immediately clear from (A5) that 

V ar[XSRS ] ≥ V ar[XRSS ] .  Thus the RSS mean is at least as precise as its SRS counterpart for any 
given sample size, because the variance of the RSS mean involves only within-rank variability and 
does not include between-rank variability. 

Consider now the sample counterparts to the mean and variance, µ[r ] and σ[r ]
2 , respectively, of 

the rth judgment rank population.  A natural and unbiased estimator for the mean [ ]rµ  is simply the 
sample average of the m measurements taken from that rank, namely,  

    ˆ µ [r] = X r[ ] =
1
m

X r[ ] i
i=1

m

∑                                 (A6)  

Similarly, a natural unbiased estimator of the variance [ ]
2
rσ  is provided by the sample variance 

of those same m measurements, namely,  



Journal of Contemporary Management,  Vol. 4, No. 2 

~ 13 ~ 
 

    ˆ σ [r ]
2 = S r[ ]

2 =
1

m −1
X r[ ] i − X r[ ]( )2

i=1

m

∑                            (A7) 

We have already noted that the RSS estimator for the overall population mean is given by 
ˆ µ RSS = X RSS and from (A3) and (A7) it follows that an estimator for the variance of ˆ µ RSS = X RSS is 

given by 

      Var
^

[X RSS ] =
1

mk 2 ˆ σ [r ]
2

r=1

k

∑ =
1

mk 2 S[r]
2

r=1

k

∑ .                            (A8) 

Using these two estimators, in conjunction with the result that the distribution of ˆ µ RSS = X RSS 
can be well-approximated by a normal distribution when the number of cycles, m, is large, leads to 
the conclusion that an approximate 100(1-α)% confidence interval for the population mean µ is 
given by the expression  

         ∑
=

⋅±
k

r
rRSS S

mk
zX

1

2
][22/

1
α                              (A9) 

where 2αz  is the (α/2)th upper percentile of the standard normal distribution.  

We also note that the improvement in precision from using the RSS estimator X RSS instead of 
the SRS estimator X SRS is represented by the difference in their variances, since both estimators are 
unbiased.  We see from (A5) that this improvement in precision is given by  

  I  = Var[XSRS ] − Var[XRSS ] =
1

mk2 (µ[r ] − µ)2 ,
r=1

k

∑                 (A10) 

which we previously referred to as the between-rank variability.  It follows that  

   ˆ I =
1

mk 2 (X [r] − X RSS )2

r=1

k

∑                            (A11) 

is a natural estimator for the amount of improvement from using RSS data instead of SRS data to 
estimate the population mean µ.  
   
 

Appendix B: Detailed Example of Confidence Intervals 
                            and Hypothesis Tests for a RSS 

 To provide a detailed example of the process for obtaining a confidence interval for µF, the 
average amount of fraud per account in the financial records of the retail clothing store, and pF, the 
percentage of fraudulent accounts in the financial records, we applied the R command RSS(k, m, x) 
in the R package NSM3 developed by Schneider (2014) for the third edition of Hollander et al. 
(2014) to the previously discussed population of 5,000 inventory items.  For illustrative purposes, 
we choose a set size of k = 10 and number of cycles m = 40, so that the total number of audited 
values in our RSS is n = mk = 400.  We present the 400 RSS observations (the book values BV and 
the audited values AV) in Table 6 at the end of this paper, categorized by both the cycle number and 
the associated judgment rank order. 

From the AV and BV values in Table 6, we obtain the two pieces of information ZF = BV – 
AV = amount of fraud in the account and the fraud indicator IF = 1 or 0 if there is or is not fraud, 
respectively, in the account.  Averaging across the cycles for the fraud data in Table 6, we see that 
the k = 10 individual judgment rank sample means for the amounts of fraud in this RSS are 
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   Z F[1] = 0, Z F[2] = 0, Z F[3] = 0, Z F[4 ] = 0, Z F[5] = 0, 
       Z F [6] = 0, Z F[7] = 6.179, Z F[8] = 30.324, Z F[9] = 69.2055, Z F [10] = 260.1955 , 
and the corresponding k = 10 judgment rank sample percentages for the presence of fraud in the 
RSS are 
   ˆ p F[1] = 0, ˆ p F[2] = 0, ˆ p F[3] = 0, ˆ p F[4] = 0, ˆ p F[5] = 0,  
         ˆ p F[6] = 0, ˆ p F[7] = .025, ˆ p F[8] = .100, ˆ p F[9] = .225, ˆ p F[10] = .70.  

 Using the expression ˆ σ [r ]
2 = SF r[ ]

2 =
1
39

ZF r[ ] i − Z F r[ ]( )2

i=1

40

∑ from equation (A7), the sample 

estimates 2
]10[

2
]1[ ,, FF SS K  of the individual judgment rank variances σ[r ]

2  for the amounts of fraud in 
the various judgment ranks are then 
   SF[1]

2 = 0, SF[2]
2 = 0, SF[3]

2 = 0, SF[4]
2 = 0, SF[5]

2 = 0, 
 SF[6]

2 = 0, SF[7]
2 =1527.202, SF[8]

2 = 9700.704, SF[9]
2 =17841.5, SF[10]

2 = 35642.54. 
Using the indicator functions for the presence or absence of fraud in conjunction with equation 

(A7) again, the sample estimates 2
]10[

2
]1[ ,, FF TT K  of the individual judgment rank variances σ[r ]

2  for 
the percentage of fraud in various judgment ranks are then 
        TF[1]

2 = 0, TF[2]
2 = 0, TF[3]

2 = 0, TF[4]
2 = 0, TF[5]

2 = 0, 
   TF[6]

2 = 0, TF[7]
2 = .025, TF[8]

2 = .09231, TF[9]
2 = .17885, TF[10]

2 = .21538. 

References 
[1] Albrecht, S. W., Albrecht, C. C., Albrecht, C. O., and Zimbelman, M. F. (2013).  Fraud 

Examination. South-Western, Mason 415-423. 

[2] American Institute of Certified Public Accountants (AICPA) (2008). Audit Guide:  Audit 
Sampling.  New York: AICPA. 

[3] Arens, A. A., Elder, R. J., and Beasley, M. S. (2012). Auditing and Assurance  Services: An 
Integrated Approach. Prentice-Hall, Boston 250-258. 

[4] Bailey, A. D. (1981). Statistical Auditing: Review, Concepts, and Problems. Harcourt Brace 
Jovanovich, New York: Harcourt. 

[5] Dell, T. R., and Clutter, J. L. (1972). “Ranked set sampling theory with order statistics background”, 
Biometrics 28(2): 545-555. 

[6] Fisher, R. A. (1925). Statistical Methods for Research Workers. Edinburgh: Oliver and Boyd. 

[7] Gemayel, N. M., Stasny, E. A., Tackett, J. A., and Wolfe, D. A. (2012). “Ranked set  sampling: an 
auditing application”, Review of Quantitative Finance and Accounting 39(4): 413-422. 

[8] Hollander, M., Wolfe, D. A., and Chicken, E. (2014). Nonparametric Statistical Methods, 3rd ed.  
Hoboken, New Jersey: John Wiley and Sons.   

[9] Louwers, T., Ramsay, R., Sinason, D., Strawser, J., and Thibodeau, J. (2014).  Auditing and 
Assurance Services. 5th Ed. McGraw-Hill/Irwin, Columbus. 

[10] Messier, W. F., Glover, S. M., and Prawitt, D. F. (2014). Auditing and Assurance Services: A 
Systematic Approach. 9th Ed. McGraw-Hill/Irwin, Columbus. 

[11] McIntyre, G. A. (1952). “A method for unbiased selective sampling using ranked sets”, Australian 
Journal of Agricultural Research 3(4): 385-390. 



Journal of Contemporary Management,  Vol. 4, No. 2 

~ 15 ~ 
 

[12]  McIntyre, G. A. (2005). “A method for unbiased selective sampling using ranked sets”, 
Republished in The American Statistician 59(3): 230-232.  

[13] Mode, N. A., Conquest, L. L., and Marker, D. A. (1999). “Ranked set sampling for  ecological 
research: accounting for the total costs of sampling”, Environmetrics  10(2): 179-194. 

[14] Nigrini, M. J. (2011). Forensic Analytics: Methods and Techniques for Forensic Accounting 
Investigations. New York: John Wiley and Sons. 

[15] Patil, G. P. (2002). “Ranked set sampling”, In: A. H. El-Shaarawi and W. W. Piegorsch (eds.), 
Encyclopedia of Environmetrics, Vol.3 ,pp.1684-1690. Chichester: John Wiley and Sons. 

[16] Schneider, G. (2014).  R Package for Nonparametric Statistical Methods. Third Edition. 

[17] Wells, J. T. (2011). Fraud Examination. Wiley, Hoboken. pp.317-318. 

[18] Wolfe, D. A. (2012). “Ranked set sampling—its relevance and impact on statistical  inference”, 
Spotlight Article ISRN Probability and Statistics, Volume 2012: Article ID 568385. 

 
Table 6. RSS of n = 400 Observations (Book Value = BV and Audited Value = AV) from the 

Inventory Population Using Set Size k = 10 and Cycle Size m = 40 
   

Judgment Rank Order 
Cycle  Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9 Rank 10 

1 BV 261.38 294.74 350.15 362.12 321.51 303.35 478.59 463.76 595.84 826.48 
 AV 261.38 294.74 350.15 362.12 321.51 303.35 478.59 463.76 199.74 396.38 
            

2 BV 268.49 215.73 268.2 283.34 421.5 444.97 469.19 485.01 625.25 926.83 
 AV 268.49 215.73 268.2 283.34 421.5 444.97 222.03 485.01 365.69 498.6 
            

3 BV 154.6 320.8 317.27 361.25 373.07 475.36 357.11 549.74 490.03 788.97 
 AV 154.6 320.8 317.27 361.25 373.07 475.36 357.11 314.6 490.03 335.73 
            

4 BV 133.65 327.41 417.88 372.21 356.37 478.63 470.51 580.43 729.29 606.84 
 AV 133.65 327.41 417.88 372.21 356.37 478.63 470.51 580.43 467.69 606.84 
            

5 BV 183.3 329.11 265.44 378.28 337.6 384.07 551.44 490.61 476.63 620.24 
 AV 183.3 329.11 265.44 378.28 337.6 384.07 551.44 490.61 476.63 620.24 
            

6 BV 169.84 316.23 349.38 377.85 447.16 487.63 501.38 423.31 510.38 662.73 
 AV 169.84 316.23 349.38 377.85 447.16 487.63 501.38 423.31 510.38 458.95 
            

7 BV 65.86 340.92 334.17 292.85 396.03 411.75 398.77 440.75 661.91 475.32 
 AV 65.86 340.92 334.17 292.85 396.03 411.75 398.77 440.75 661.91 475.32 
            

8 BV 113.06 235.72 215.89 357.63 389.26 372.79 406.89 459.43 587.73 900.11 
 AV 113.06 235.72 215.89 357.63 389.26 372.79 406.89 459.43 587.73 415.56 
            

9 BV 156.45 241.7 381.91 321.75 315.21 433.93 359.2 473.32 477.02 836.68 
 AV 156.45 241.7 381.91 321.75 315.21 433.93 359.2 473.32 477.02 388.13 
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10 BV 232.77 269.87 326.5 337.61 443.17 363.81 395.31 497.11 441.91 762.44 
 AV 232.77 269.87 326.5 337.61 443.17 363.81 395.31 497.11 441.91 267.41 
            

11 BV 215.72 233.56 392.62 322.88 388.22 458.05 417.6 467.87 426.1 712.03 
 AV 215.72 233.56 392.62 322.88 388.22 458.05 417.6 467.87 426.1 255.7 
            

12 BV 204.64 325.7 339.73 269.78 364.85 484.65 391.89 358.03 803.01 553.67 
 AV 204.64 325.7 339.73 269.78 364.85 484.65 391.89 358.03 538.56 553.67 
            

13 BV 308.72 237.91 369.63 341.99 408.23 442.25 378.39 514.31 587.16 841 
 AV 308.72 237.91 369.63 341.99 408.23 442.25 378.39 514.31 587.16 511.17 
            

14 BV 242.75 296.23 286.68 399.74 376.56 375.22 433.62 508.17 471.97 755.96 
 AV 242.75 296.23 286.68 399.74 376.56 375.22 433.62 508.17 471.97 264.49 
            

15 BV 259.25 225.19 279.38 289.21 425.38 370.11 513.55 473.17 594.44 573.81 
 AV 259.25 225.19 279.38 289.21 425.38 370.11 513.55 473.17 274.65 573.81 
            

16 BV 73.86 199.93 378.84 252.62 460 332.34 381.03 532.99 575.28 582.98 
 AV 73.86 199.93 378.84 252.62 460 332.34 381.03 532.99 575.28 582.98 
            

17 BV 188.89 200.24 298.9 351.87 306.04 440.27 459.16 450.08 478.2 519.74 
 AV 188.89 200.24 298.9 351.87 306.04 440.27 459.16 450.08 478.2 519.74 
            

18 BV 217.34 268.71 320.67 312.8 398.06 356.15 406.52 415.24 517.64 688.98 
 AV 217.34 268.71 320.67 312.8 398.06 356.15 406.52 415.24 517.64 427.04 
            

19 BV 168.89 305.59 244.28 379.73 369.07 370.61 470.69 496.23 619.03 527.16 
 AV 168.89 305.59 244.28 379.73 369.07 370.61 470.69 496.23 310.02 527.16 
            

20 BV 143.24 199.1 305.56 404.72 395.61 447.4 466.27 378.5 503.69 533.35 
 AV 143.24 199.1 305.56 404.72 395.61 447.4 466.27 378.5 503.69 533.35 
            

21 BV 172.87 236.29 235.98 285.78 378.52 424.59 496.56 474.37 472.93 588.33 
 AV 172.87 236.29 235.98 285.78 378.52 424.59 496.56 474.37 472.93 373.66 
            

22 BV 157.75 321.05 213.83 397.11 426.25 419.53 516.59 482.16 431.5 774.83 
 AV 157.75 321.05 213.83 397.11 426.25 419.53 516.59 482.16 431.5 324.92 
            

23 BV 171.4 315.81 355.78 423.55 433.63 407.34 387.47 476.08 476.48 751.32 
 AV 171.4 315.81 355.78 423.55 433.63 407.34 387.47 476.08 476.48 401.93 
            

24 BV 54.03 325.69 318.2 305.13 339.33 409.22 445.07 488.64 543.29 803.62 
 AV 54.03 325.69 318.2 305.13 339.33 409.22 445.07 488.64 543.29 451.75 
            

25 BV 209.51 294.84 394.46 396.12 342.56 425.26 527.32 458.63 499.6 764.41 
 AV 209.51 294.84 394.46 396.12 342.56 425.26 527.32 256 499.6 329.4 
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26 BV 280.17 271.19 327 369.68 435.71 335.23 389.07 432.55 523.51 508.49 
 AV 280.17 271.19 327 369.68 435.71 335.23 389.07 432.55 523.51 256.15 
            

27 BV 127.24 277.69 330.87 353.8 371.85 389.2 374.02 526.66 531.9 949.66 
 AV 127.24 277.69 330.87 353.8 371.85 389.2 374.02 526.66 531.9 668.12 
            

28 BV 75.55 259.04 310.27 369.79 400.7 361.81 418.5 446.44 486.63 874.56 
 AV 75.55 259.04 310.27 369.79 400.7 361.81 418.5 446.44 486.63 631.96 
            

29 BV 155.42 264.85 283.61 371.81 365.35 421.25 419.04 436.29 593.12 578.36 
 AV 155.42 264.85 283.61 371.81 365.35 421.25 419.04 436.29 593.12 297.29 
            

30 BV 233.07 128.6 312.11 321.56 331.1 314.95 460.3 544.27 692.28 683.38 
 AV 233.07 128.6 312.11 321.56 331.1 314.95 460.3 544.27 277.99 315.37 
            

31 BV 188.21 185.11 430.52 357.67 309.27 344.23 430.24 722.03 540.43 528.03 
 AV 188.21 185.11 430.52 357.67 309.27 344.23 430.24 238.78 540.43 528.03 
            

32 BV 239.39 284.15 287.44 330.04 367.44 389.84 367.53 413.56 644.49 808.57 
 AV 239.39 284.15 287.44 330.04 367.44 389.84 367.53 413.56 434.9 444.26 
            

33 BV 110.79 304.68 262.56 280.83 274.57 481.45 468.16 490.01 498.2 531.43 
 AV 110.79 304.68 262.56 280.83 274.57 481.45 468.16 490.01 498.2 531.43 
            

34 BV 249.98 267.44 304.21 280.52 461.14 419.94 419.85 471.64 472.44 788.05 
 AV 249.98 267.44 304.21 280.52 461.14 419.94 419.85 471.64 472.44 410.61 
            

35 BV 164.48 307.24 383.09 288.49 307.29 418.83 389.17 487.62 515.03 586.87 
 AV 164.48 307.24 383.09 288.49 307.29 418.83 389.17 487.62 515.03 295.96 
            

36 BV 270.67 281.8 400.96 327.86 391.64 452.99 532.18 432.27 494.22 705.77 
 AV 270.67 281.8 400.96 327.86 391.64 452.99 532.18 432.27 494.22 396.54 
            

37 BV 227.92 274.6 400.23 367.36 294.38 384.43 480.11 502.33 471.5 1002.75 
 AV 227.92 274.6 400.23 367.36 294.38 384.43 480.11 502.33 471.5 503.84 
            

38 BV 181.33 235.21 414.57 338.36 414.25 335.85 444.22 476.36 668.75 551.27 
 AV 181.33 235.21 414.57 338.36 414.25 335.85 444.22 476.36 334.92 551.27 
            

39 BV 181.98 298.92 320.93 247.11 419.96 398.24 453.21 491.64 582.09 840.86 
 AV 181.98 298.92 320.93 247.11 419.96 398.24 453.21 199.7 582.09 448.74 
            

40 BV 232.78 330.21 262.4 290.93 396 391.16 491.47 475.29 613.73 1042.64 
 AV 232.78 330.21 262.4 290.93 396 391.16 491.47 475.29 613.73 577.2 
 


