## Chapter 5

## Why is A Discrete Cobb-Douglas Production Function A Numerical Core of Social and Economic Science?

## Foreword to Chapter 5

This chapter aims at clarifying the current characteristics of the economic literature. The characteristics are well revealed, starting with the CobbDouglas production function and inspecting the endogenous system and its KEWT database for 81 countries by countries, sector (government and private), and year and over years. The literature stays at the price-equilibrium while the KEWT database at the endogenous-equilibrium. A scientific discovery is that the endogenous-equilibrium is a surrogate for the price-equilibrium and reinforces the market principles cooperatively. The literature is exogenous and well-behaved while the endogenous system endogenous and totally measured. Taylor rule inevitably prevails when and where Say's (1803) law of supply= demand is denied as accepted in the literature. Nevertheless, the market results obey author's neutrality of the financial/market assets to the real assets under the endogenous-equilibrium. If the market results become short-sighted and biased, this fact comes from the difference between the micro-based level and the macro aggregated endogenous level. In short, the literature cannot integrate various partial equations with different assumptions while the KEWT database simultaneously integrates all the aspects and equations, with no assumption and beyond ex-post results versus ex-ante causes.

This chapter sums up the essence of the Cobb-Douglas production function, scientifically but not mathematically, starting with Euler's theorem and the compatible market principles. The essence of the author's C-D production function (hereunder, the C-D PF) unites equations and its hyperbola with philosophy that has been discussed separately from equations in the literature. A system of partial=whole realizes the united philosophy and equations in two dimensional hyperbolas. Without money-neutral led by the real assets endogenously, the author could not find the foundation of social/economic science in the $E E S$.

Signposts to Chapter 5: Cobb-Douglas, Euler's theorem, discrete, the real assets, the financial/market assets, the market principles, scientific, partial, whole, equations, assumptions, purely endogenous, the relative share of capital, the capital-labor ratio, the capital-output ratio, break-even point (BEP), EES ("Earth Endogenous System")

## Chapter 5, HEU

## 1. Questions and Answers to the essence of the C-D production function

The author first questions: (1) Why does the Cobb-Douglas production function (hereunder, the C-D PF) presume well-behaved? (2) Why is the C-D PF for economics, micro and macro, and econometrics, used as a base tool, although homogeneous degree one is simple? (3) Why does the C-D PF, in the literature, solely use the capital-labor ratio, neglecting the capital-output ratio? (4) Why does the C-D PF follow an exogenous rate of technological progress, instead of developing an endogenous rate of technological progress? (5) Is it impossible for the C-D PF to specify and further erase assumptions required for economic equations?

These questions are related to the essence of the C-D PF. The author, in this section, abbreviates the background and construction history and roughly sums up the implication of (1) no assumption and (2) limits of econometrics externally using statistics data. The core is 'purely endogenous with no assumption to endogenous equations' in "Earth Endogenous System" (hereunder the $E E S$ ).

First, assumptions are used differently by model/system. Assumptions are used for theory and supporting equations and also for statistics data in estimation, although both belong to economic analyses, economics and econometrics. These assumptions are, strictly speaking, all exogenous. Economists say endogenous but, its essence is not 'purely endogenous' but partial. It implies that a system set up must use no assumption in equations formulated for the system and exclude any use of externals in statistics. It implies that economists cannot express 'no assumption' under the market principles. Conclusively, the EES and its KEWT database use the same: KEWT database holds under no assumption and measures the price levels, absolute $P$ and relative $p$, whose value accurately equals 1.0000000 , and as a result, the elasticity of substitution, $\sigma=-\frac{\Delta \mathrm{k} / \mathrm{k}}{\Delta(\mathrm{r} / \mathrm{w}) /(\mathrm{r} / \mathrm{w})}$, exactly becomes 1.0000000: $P=p=1 / 0000000$ and $\sigma=1.0000000$, where the marginal rate of substitution $(M R S=r / w), M P L=w$, and $M P K=r$. It implies that perfect competition under one price per commodity hold, reinforcing and cooperating with the market principles. All of these facts are solely macro-oriented and proved in the EES and KEWT, theoretically and empirically.

Second, for limits of econometrics externally using statistics data, the author here selected and inspected four papers in Econometrics (see,

## Why is A Discrete Cobb-Douglas Production Function A Numerical Core of Social and Economic Science?

References) that commonly use the C-D PF : (1) Dhrymes, P. J. (1962), Kmenta, J. (1964); (2) Fisk, P. R. (1964, 1966); and (3) Zellner, A., Kmenta, and J. Dreze, J. (1966). These three respectively publish unbiased estimators for the parameters, properties of alternative estimates, estimation of marginal product, and specification and estimation of modeling. Last (4), Marshall, David, A. (1972, 2005), estimates the expected marginal rate of substitution (cf. the above $M R S$ ). The author pays attention to their key words such as parameters, estimators, properties, marginal product, and specification. This is because the author has suffered from how to express/measure these key words in my life-work. In short, statistics data are consecutive while economic and econometrics analyses, regardless of discrete and continuous, look after rules, hypotheses, and stylized facts in changing results, by year under changing economic and social policies and using waste mixture of micro and macro. Really, the methodology surprisingly progresses over years yet, actual and estimated/forecasted results, never the same as before. Naturally and regrettably, assumptions cannot be strictly specified and Lucas's (1976) critique holds forever.

Then, is there any common connector between the current economic and econometrics analyses that use various s and the EES and KEWT database that use a discrete?

For this question, let the author watch typical graphs in four different papers, currently most cited by readers:
(1) Dai and Singleton (427-429, 431, 433,-435, JFE 63, 2002): ‘Expectation puzzles, time-varying risk premium, and affine models of the term structure.' Seven figures each indicates econometrics equations, where the x axis shows maturity (years) and, the $y$ axis several parameters, unadjusted, and projection coefficients, risk-adjusted, prepared in four tables. These figures correspond with those drawn using endogenous data. It seems no comparable each other yet, an endogenous discovery clarifies that actual data and results are always within a certain range of endogenous data and results. In this respect, the comparison expresses each own results at different frameworks but is based on the same endogenous results.
(2) Gallmeyer, Hollifield, and Zin (947, 948, JME 52, 2005): ‘Taylor rules, McCallium rules and the term structure of interest rates.' This paper is based on market data, externally. Taylor rules apparently manipulate relationships between market and financial assets but, actually are controlled by the real assets behind. Hitherto the real assets have never been expressed purely endogenously. Nevertheless, Taylor rules have resulted in the same results of the real assets, due to the author's

## Chapter 5, HEU

neutrality of the financial/market assets to the real assets (money-neutral). Therefore graphically, 1) Taylor Rule and 2) McCallum Rule, commonly with stochastic volatility and stochastic price of risk are actually shown. The above four figures taken in the y axis do not disperse but converge to zero line, by the level of monetary policy taken in the x axis. It implies that by the author's neutrality, these figures simultaneously hold under the endogenous-equilibrium.
(3) Flood and Rose ( $962,964,966-967$, JME 52, 2005): 'Estimating the expected marginal rate of substitution: A systematic exploitation of idiosyncratic risk,' where 14 time-series figures are shown by data, method, T-bill and expected MRS, and firm. Again, expected MRS does not enlarge, regardless of good or bad monetary policy since money-neutral works under the endogenous-system. Idiosyncratic risk happens when the situation rapidly runs out of moderate endogenous data.
(4) Palivos (1927-29, JEDC, 2001): 'Social norms, fertility and economic development.' Palivos' four figures show the tendency spread between actual statistics data over years, 1967/78/79 to 1986/87; GDP, services, consumption, and real fixed investment. These data are ex-post and, do not follow national income equality of 'income=expenditures=output at the real assets' that guarantees Say's law. Nevertheless, differences between statistics and endogenous data do not diverge but converge over years. This is because the actual statistics data always stay within a certain range of endogenous data under money-neutral.

The author now pays attention to an actual ex-post fact that wages divided by profits at enterprises has decreased particularly for the last few years. This actual fact shows policy-makers have failed to maintain dynamic endogenous balances between government and private sectors at the macro level. In this respect, the above market reflections as proved by the above four papers are still short-sighted. Policy makers should not solely rely on statistics and external data and accordingly, Taylor' rules (1993) and market indicators too much. Policy makers consecutively need to remember the equality of $Y=C+\Pi=$ $W+P$, actually hidden in the real assets.

## 2. Euler's theorem and the C-D PF

### 2.1. Preliminary common arrangement to the C-D PF

For the initial data: In the literature, the initial data has its own proper implication in the C-D PF, $Y=A K^{\alpha} L^{1-\alpha}$, where A is total factor productivity, $A=T F P$. Let the C-D PF differentiate using d as each statistics (actual) variable's by time: $d A / A=d Y / Y-\alpha d K / K-(1-\alpha) d L / L$, where $Y$ is $G D P$ and $K$ is actual stock of capital, and $L$ is actual labor. Here, the relative

## Why is A Discrete Cobb-Douglas Production Function A Numerical Core of Social and Economic Science?

share of capital, $\alpha$, is determined by the initial ratio or an average ratio during the years taken for analysis. Thus, the value/ratio of $\alpha$ depends on the initial actual variables, $G D P, K$, and $L$. The author indicates; is $K$ estimated consistently with other variables? Answer is yes, since each variable is independent of each other in the literature.

Compound interest calculation: In the literature, the rate of interest (interest rate) is externally given. Economists do not expect that the rate of return is estimated accurately. A reason is that the C-D PF historically has relied on the capital-labor ratio, $k=K / L$, neglecting the capital-output ratio, $\Omega=K / Y . \quad \alpha=\Omega \cdot r$ holds as an identity. Nevertheless, $\alpha=\Omega \cdot r$ has not been tested using $\Omega$ and $r$ and also has not been connected with total factor productivity, $\alpha=\Omega \cdot r$, in the literature.

Compound interest rate is simply calculated when deposit-time $T$ is infinite. Start with total sum of capital and interest, $(1+r)^{T}$. If two times per year, $\left(1+\frac{r}{2}\right)^{2 T}$; and if $n$ times per year, $\left(1+\frac{r}{n}\right)^{n T}$. Suppose $\mathrm{n} \rightarrow \infty$. The answer is: $(1+r / n)^{\{(n / r)\}} \rightarrow e=2.718 \ldots$, resulting in $(1+r / n)^{\wedge}\{(n / r) r T\} \rightarrow$ $e^{\wedge}(r T) .(1+r / n)^{\{(n / r)\}} \rightarrow e=2.718 \ldots$

For $(1+1 / n)^{n}$ : When $n=1,(1+1)^{1}=2 ; \quad$ if $n=2,(1+1 / 2)^{2}=$ $1+2 \times 1 / 2+1 / 4=2.25 ;$ and when $n=3,(1+1 / 3)^{\wedge} 3=1+3 \times$ $(13)^{\wedge} 2+3 \times(13)+(133=2.37037037$; and finally, the base of natural (Napierian) logarithm, $e=2.718281828459$ is obtained.

### 2.2. Laws of IRC, CRC, DRC: from exogenous to endogenous

Let us analyze IRC (increasing returns to capital), CRC (constant returns to capital), DRC (diminishing returns to capital) using the, $y=A k^{\alpha}$ : Each growth rate by logarithmic differentiation, $g(y)=g(A)+\alpha g(k)$. Differentiate, $y=A k^{\alpha}$, partially by $k$; the rate of return, $r=\frac{\partial y}{\partial k}=\alpha A k^{-(1-\alpha)}$.

The growth rate of $r$ is $g(r)=g(A)-(1-\alpha) g(k)$. Then, $g(r)=g(y)-g(k)$ holds simply. Therefore,

1. Condition of IRC: $\mathrm{g}(\mathrm{r})>0 \rightarrow g(\mathrm{y})>g(k)$.
2. Condition of CRC: $g(r)=0 \rightarrow g(y)=g(k)$.
3. Condition of DRC: $\mathrm{g}(\mathrm{r})<0 \rightarrow g(\mathrm{y})<g(k)$.
4. To author's understanding, (1) homogenous degree one, $m=1.000$, presents CRC and under CRS. (2) If $m>1.000$, it presents IRC but, CRS does not hold. (3) If

## Chapter 5, HEU

$m<1.000$, it presents DRC but, CRS does not hold.
5. Contrarily in the case of the KEWT database, the rate of return, $r=\Pi / K$, is measured as an endogenous equation and this equation, theoretically, empirically, and simultaneously, distinguishes IRC, CRC, and DRC; each under CRS. More clearly, the rate of return function to the ratio of net investment to output clarifies IRC, CRC, and DRC, as a reduced form of the endogenous equation: The less the ratio of net investment to output the higher the rate of return is endogenously. Maximum profits expressed using the parabolic function in the literature is consistent with maximum returns with minimum net investment expressed using the hyperbolic function; the former never needs the origin and the latter, definitely needs the origin and the circle hidden behind the hyperbolic curve. In the case of recursive programming, however, the transitional path follows DRC. Seldom IRC happens, where the rate of return shows minus (see Philippines, 2010). When the rate of return becomes close to zero due to huge deficits and national debts, CRC happens, as in Japan 2010 for the last fifteen years. This sort of CRC cannot be solved so that the market reflects the serious situation directly. This is the true character of deflation. Deflation cannot be attacked unless deficits and debts decrease sharply over years. The financial/market policies are apt to be short-sighted. These policies never exclude the true cause of deflation at the real assets, as shown by the above hyperbolic function. This discovery is empirically proved by author's neutrality of the financial/market assets to the real assets.

### 2.3. Euler's theorem

This sub-section mathematically but generally explains Euler's theorem by using the C-D PF. The next sub-section further steps into earlier/typical C-D PF equations, formulated by P. H. Wicksteed (1938). In this point of entry, there has been no example to precisely connect C-D PF equations with required assumptions. Literature cannot precise reason for this fact, due to the essence of the market principles.

First, the core of the C-D PF is homogeneous degree one or constant returns to scale. Set homogeneous degree one, $Y=f(K, L)$.

Euler's theorem is $K F_{K}+L F_{L}=Y$, where $F_{K}=\partial F / \partial K, F_{L}=\partial F / \partial L$.
Then, $\mathrm{Y}=\mathrm{AK}^{\alpha} L^{1-\alpha}, 0<\alpha<1$, proves $K F_{K}+L F_{L}=Y$ as follows:
$f_{K}=\partial Y / \partial K=\alpha A K^{\alpha-1} L^{1-\alpha}=\alpha A K^{\alpha} L^{1-\alpha} K^{-1}=\alpha Y / K$.
$f_{L}=\partial Y / \partial L=(1-\alpha) A K^{\alpha} L^{-\alpha}=(1-\alpha) A K^{\alpha} L^{1-\alpha} L^{-1}=(1-\alpha) Y / L$.
These imply that production outcome $Y$ is perfectly distributed to two factors, $K$ and $L$.

## Why is A Discrete Cobb-Douglas Production Function A Numerical Core of Social and Economic Science?

To realize the above Euler's theorem, perfect competition (law of one price) and rational behavior are subjectively required. How to set up the design and system for guaranteeing Euler's theorem?

When this system is successfully set up, $P Y=P f_{K} K+P f_{L} L=r K+w L$ holds, where $P=$ price, $w=$ nominal wage rate, $r=$ rate of profits/returns.

Suppose, $P f_{L}>w$ :
The LHS of this inequality is marginal revenue and its RHS is marginal expenses for increase in employment. This phenomenon is rational and so that executed. If the inequality is reversed $\left(P f_{L}>w\right)$, the phenomenon is irrational and so that not executed.

The same applies to capital and the rate of profits/returns, $P f_{K}>r$ and $P f_{K}<r$.

Therefore, the price-equilibrium holds if and only if $P f_{L}=w$ and $P f_{K}=r$.
The above proofs applying Euler's theorem to the C-D PF are mathematical so that these are justified mathematically. Note 1: Mathematics holds always even if equations are not whole but partial in any model/system while economics does not holds unless the whole model/system is consistent over years. Note 2: the market principles are the carrier of the price-equilibrium. The market principles show prices by vertically by goods and services, where the above $P$ is externally given and cut the whole consistency of the whole system. In other words, statistics data hold partially by nature. The proofs gouge the limit of economic statistics and its data.

### 2.4. Historical review of Wicksteed (1938) for Euler's theorem

Euler's theorem was earlier analyzed by Robinson, J. (1934), along with 'static' marginal productivity theory. Euler's theorem has been a common base, among Keynesian (Post, Neo, and New schools), and classical and Neo-classical schools. Euler's theorem robustly holds among static and dynamic; closed and open; and further under perfect and imperfect competition. Euler's theorem thus holds beyond the use of the production function, the price-equilibrium, and the author's endogenous-equilibrium. Euler's theorem will last and never fades away.

Chapter of "Optimum function-measure," chapter 9 in this book, presented to Annals of Mathematics, Princeton, in Aug 2014, discusses Euler, Leonhard, from the viewpoint of geometry and the golden ratio versus the silver ratio. Also, the previous sub-section touched Euler, Leonhard, as true founder of the C-D PF and numerous facts.

## Chapter 5, HEU

This sub-section, apart from Euler, Leonhard, solely reviews Philip, H. Wicksteed's (399, 407-408, 412-413, 1938) Co-ordination of the Laws of Distribution, and cites Wicksteed's unique equations so as to appeal the requirement of precise interpretation of assumptions in economics.

Wicksteed (ibid., 399 and 407-8): First let the author cite, "the mathematical form of statement...as a safeguard against unconscious assumptions, and as a reagent that will precipitate the assumptions held in solution in the verbiage of our ordinary disquisitions." ${ }^{1}$ Wicksteed uniquely formulates the following equations, using $P=f(a, b, c, \ldots)$ as a homogeneous function of the first degree:

$$
\begin{gathered}
m P=f(m a, m b, m c, \ldots) \\
P=a \frac{\partial P}{\partial a}+b \frac{\partial P}{\partial b}+c \frac{\partial P}{\partial c}+\cdots
\end{gathered}
$$

While the mathematician has only to set out the generalized form of Euler's theorem in order to show ${ }^{2}$ that
$P \lessgtr a \frac{\partial P}{\partial a}+b \frac{\partial P}{\partial b}+\cdots$.
According as $m P \lessgtr+(m a, m b, \ldots)$.
Wicksteed (ibid., 412-413): But for the most profitable output, demand curve, which is higher, must have a greater slope than the cost curve.

Let $x$ be output, $y$ price, and $z$ average cost.
Then $y+x \frac{d y}{d x}=z+x \frac{d z}{d x}$ (marginal revenue $=$ marginal cost).
$\therefore$ if $y>z, \frac{d y}{d x}<\frac{d z}{d x}$.
$\therefore$ the negative slope of the demand curve is greater than that of the cost of curve. (In perfect competition-see p. 407 above-we have the special case in which $d y / d x=0$.
$\therefore$ when $y>z, \frac{d z}{d x}$ must be positive. Since the prices of the factors are constant, this entails diminishing physical returns.

For the above equations, the author first indicates that the above equations are right but, for assumptions required for equations' justification, Wicksteed does not clarify the essence of assumptions under the market principles. The author indicates the following statements:

[^0]
## Why is A Discrete Cobb-Douglas Production Function A Numerical Core of Social and Economic Science?

(1) In the price-equilibrium and its market principles, it is true that quantities are physical while qualities are prices, as ex-post analyzed by Jorgenson and Griliches (1967). The market principles show prices vertically and equation needs externals such as $C P I$, so that equations need arbitrary assumptions to justify modeling.
(2) By the author's money-neutral, the real assets and financial/market assets are the same within the range of moderate equilibrium. Nevertheless, mathematics cannot distinguish economic assumptions with the case of no assumption in the EES. Wicksteed could not naturally explain the existence of indispensable assumptions. This fact is totally applicable to economic literature.

## 3. Recursive programming of technology FLOW and Technology-STOCK=A=TFP, each by Hicks, Solow, and Harrod

This section empirically and consistently summarizes 'flow=the rate of technological progress' and 'stock=total factor productivity' in technology, by using recursive programming in the transitional path and, comparing three models, Hicks (1932), Solow (1956), and Harrod (1942), that use the same .

An endogenous rate of technological progress is measured by $g_{A(F L O W)}=$ $i(1-\beta)$, simultaneously with the growth rate of capital stock as total factor productivity $(T F P), g_{T F P(S T O C K)}=k^{1-\alpha} / \Omega$. The author's C-D PF is 'discrete' and all sorts of possible parameters and variables are measured with seven endogenous parameters. ${ }^{3}$

Historically, relationships between the rate of technological progress and total factor productivity TFP was empirically clarified using Hicks (1932), Solow (1956), and Harrod (1942):

[^1]
## Chapter 5, HEU

(1) Technology-flow: the rate of technological progress, $m$ Set Hicks' $m=g_{A(F L O W)}^{*}$. Then, Solow's, $m(1-\alpha)$. Harrod's, $m \cdot \alpha$. As a result, Hicks' $g_{A(F L O W)}^{*}=S l o w^{\prime} s g_{A(F L O W)}^{*}+$ Harrod's $_{A(F L O W)}^{*}$. The relative share of capital determines three differences for an endogenous rate of technological progress, $g_{A(F L O W)}^{*}=i\left(1-\beta^{*}\right)$.
(2) Technology-stock: Total Factor Productivity $(A=T F P)$

Set Solow's $A=T F P$.
Then, Hicks' $g_{A(T F P)}^{*}=$ Slow's $g_{A(T F P)}^{*} \ll$ Harrod's $g_{A(T F P)}^{*}$. For total factor productivity (TFP), Harrod's $g_{A(T F P)}^{*}$ is empirically much higher than Hicks' $g_{A(T F P)}^{*}=$ Slow's $g_{A(T F P)}^{*}$.
Why is Harrod's TFP higher than those of Hicks and Solow? It is perfectly proved by one new equation at the author's PhD (Note 5, 2003), $A=T F P=k^{1-\alpha} / \Omega .{ }^{4} \quad$ The capital-output ratio is much lower than the other two of Hicks and Solow. Why is Slow's $g_{A(T F P)}^{*}$ the same as Hicks' $^{\prime} g_{A(T F P)}^{*} ? \quad k^{1-\alpha}=A \cdot \Omega$ holds under Hicks' $Y=F(A K, A L)$ and Solow's $Y=F(A K, L)$.

Tables 1, 2, 3 and Figures 2 and $\mathbf{3}$ explain the above technology-flow ${ }^{\text {and }}$ technology-stock. For technology-flow, each country has its own character uniquely. The same pattern never happens even in endogenous data. For technology-sтоск, each country, accordingly, has its own unique character over times/years in the transitional path. Watch the rate of technological progress and the growth rate of $A=T F P$, by time and by the point of convergence, with the speed years for convergence by country. Relationship between the speed yeas, technology-flow, and technology-sтоск are more complicated and it is difficult these movements orally. Even under the same number of the speed years technology-flow and technology-sтоск move differently. It implies that consumption is independent of technology, as shown by consumption-neutral.

[^2]
## Why is A Discrete Cobb-Douglas Production Function A Numerical Core of Social and Economic Science?

## 4. Asymmetry between the capital-labor ratio

## And the capital-output ratio

This section discusses asymmetry issue hidden in the C-D PF. The economic literature discusses asymmetric issues more broadly, without sticking to the C-D PF. This section will conclusively suggest some answer to broader asymmetric problems in macroeconomics. The capital-labor ratio and the capital-output ratio are asymmetric in the transitional path, as this section empirically proves. Why? This is because the elasticity of substitution is constant in the C-D PF applied to the EES, as empirically shown soon below. Endogenous equations with no assumption are symmetric, as proved by reduced forms of endogenous equations in two-dimension plane. This is because essentially hyperbolas are each symmetric.

Thus first, this section empirically summarizes asymmetric movements between the capital-labor ratio and the capital-output ratio by using recursive programming for the transitional path by year. Second, this section takes some researches related to asymmetric issue and suggests conclusive answers.

For the above first research, the author presents three explanations, using (1) Figure 4 (Simulation of elasticity of the capital-output ratio and the capital-labor ratio by country, with each speed years), (2) Figure 5 (Structure analyses of seven endogenous parameters in recursive programming), and (3)
Figure 6, 7, and $\mathbf{8}$ (Growth rates of the capital-labor ratio and the capital-output ratio: Base area, Euro area, and Asian area).

Underlying question is: Why does the C-D PF discussed in the literature, solely use the capital-labor ratio, neglecting the capital-output ratio? The author's answer is: well-acceptance and also convenience so that the s can retrieve externals in the literature.

Figures 4 and Figures 6, 7, 8 empirically compare the capital-labor ratio with the capital-output ratio by country and by area. These empirical analyses are impossible if the author's so called macro-utility $((\rho / r)(C / Y))$ was not found between consumption and technology. For example, Feng Wang (190-191, 2007 based on 2005) shows figures 11.5, 11.6, and 11.7, with assumptions estimated based on statistics data. The author indicates that if assumptions differ, results change and that his finding between population and consumption significantly differs from endogenous proofs (see Chapter 15, the $E E S$ ). However, the author's intention is not directed to the above numerical indications but to his global fact-finding that population decreases with consumption. His global finding is consistent with the author's finding that statistics data exist always within a certain range of endogenous data, as proved by KEWT database.

## Chapter 5, HEU

Now concretely, the above (1) explanation with Figure 4: The simulation of elasticity clarifies a finding that we should avoid using fixed elasticity values. This finding in Figure 4 proves that in recursive programming has changing values of elasticity in the capital-labor ratio, $k=K / L$, and the capital-output ratio, $\Omega=K / Y$, over times/years. The related equations are set as follows:

$$
\begin{aligned}
& y=k^{\wedge} q_{k} \text { and } q_{k}=\operatorname{LN}(y) / \operatorname{LN}(k) \\
& y=\Omega^{\wedge} q_{\Omega} \text { and } q_{\Omega}=\operatorname{LN}(y) / \operatorname{LN}(\Omega)
\end{aligned}
$$

Values of elasticity are calculated each by

$$
\begin{aligned}
\eta_{k}= & (\Delta K / K) /(\Delta L / L) \text { and } \eta_{\Omega}=(\Delta K / K) /(\Delta Y / Y) \\
& (\mathrm{cf}, \text { the case of } M R S=\text { sigma }) .
\end{aligned}
$$

In short, in $k=K / L$ and $\Omega=K / Y$, elasticity value of $\eta_{k}=(\Delta K / K) /(\Delta L / L)$ does not express a fixed value over times/years in the transitional path, here regardless of the use of the capital-output ratio additionally. It is impossible for one to prove this finding, unless capital and national disposable net income are measured purely endogenously.

Second, for the above (2) with Figure 5: Structure analyses of seven endogenous parameters were already precisely proved, as shown in Chapters 7 and 8 in the $E E S$. Figure 5 is similar and presented for readers' image-help. In short, seven endogenous parameters determine all the parameters and variables simultaneously in the author's discrete C-D PF. Particularly, the capital-output ratio works an important role in the discrete production function: One must pay attention to the movements of two decisive parameters (i.e., the technology coefficient (or the quantitative net investment coefficient), $\beta^{*}$, and the diminishing returns to capital coefficient), with the level of net investment. Results are more severely shown when the total economy is shown by sector (the G and PRI sectors).

Third, for the above (3) with Figures 6, 7, and 8: Focusing on the capital-labor ratio and the capital-output ratio, each growth rate is compared by area, Base area, Euro area, and Asian area. Each country again shows various movements according to national taste, consumption, and technology, as clarified in the previous section.

Here the author casts a question: Could one wholly answer Paul Krugman's (797 words, Nov 4 2013, New York Times) 'Those Depressing Germans'? No, no one can answer. Why? Statistics data differ from theoretical data, which may be far from theoretical data and no one can verify this fact. The author here fairly answers the author's question.

## Why is A Discrete Cobb-Douglas Production Function A Numerical Core of Social and Economic Science?

(1). Money-neutral: Decision-makers cannot manipulate the exchange rate by country.
(2). The real rate of return $=0$, so that the nominal growth rate of $G D P$ equals the rate of inflation/deflation (minus inflation).
(3). The balance of payments is shown by $B O P=(S-I)=\Delta D+(S-I)_{P R I}$. Net investment turns to a low level if deficit, $\Delta D=(S-I)_{G}$, and debts, $D=$ $\Delta D / r_{M(10 y r s)}$, where $r_{M(10 y r s)}$ is ten year debt yield and, used for one of three tests of money-neutral.
(4). Crowd-out of the PRI sector is a result of huge deficits and debts. This does not improve by decision-makers' manipulation, the same as ten year debt yield.
(5). True cause of high unemployment, enlarging inequality, ${ }^{5}$ low growth rates of output and profits, and low net investment or crowd-out remain aggravating results. Politics-neutral prevails under the market principles. Then, which is worse, Germany and Republicans?

Turning to the second issue and look up Dhrymes, P. J. (1962); Kmenta, J. (1964); Fisk, P. R. (1964, 1966); Zellner, A., Kmenta, and J. Dreze, J. (1966); Marshall, David, A. (1972, 2005); Meeusen, W., and J. Vandenbroeck (1977); and Bliss Christopher $(1999,2000)$. Bliss Christopher $(1999,2000)$ indicates that Freedman, M. (1992) and Cannon, E., and Duck, N. W. (2000) are all right and that empirically growth regressions do no tell us an answer. Symmetry is strictly defined as the condition that the two curves are overlapped into one when one curve is rotated by 180 degrees. Why is econometrics analysis not possible to obtain a definite answer? Conclusively the market principles make econometrics analysis to get no answer, due to vertical price formation by goods and service. This is shown in Conclusion that summarizes wholly this chapter. Then, why is the EES and its KEWT database definitely possible to obtain a robust answer? What cause determines the asymmetry between $k=K / L$ and $\Omega=K / Y$ by country? The KEWT database shows that few countries each have symmetry between the two ratios (due to close to CRC) but all other countries each falls into asymmetry between the two ratios.

Let the author here indicate relationship between KEWT database and its

[^3]
## Chapter 5, HEU

recursive programming and by sector that is one of keys to open a robust door. KEWT database is measured robustly with three sectors (government and private, G \& PRI and aggregated amount by item). The total number of countries is 81 and includes steady African countries. The statistical quality of African countries has gradually improved by IMF staff's education endeavor yet, the author avoids using many African countries in this chapter. This is because basic endogenous equations fluctuate repeatedly. The recursive programming and the KEWT database are consistent by country, sector, and years and over years, under no assumption. Empirical results of recursive programming for the transitional path by time, $t$, catches delicate changes more clearly than those of the KEWT database. Yet, the KEWT database simultaneously determines thousand variables \& parameters or values \& ratios by country and, harmonizes and unites statistics data, actual data (statistics data+ externals), and endogenous data, ex-post and ex-ante, causes and results and space and time, just like holography. ${ }^{6}$

## 5. Measuring break-even point (BEP) in the C-D PF

The C-D PF produces broad expressions. As one of expressions such as the real rate of return $=$ zero $(R R R=0)$, this section briefly states the author's proof of life-time employment in Japan. According to Atsuo Ueda (2009), Drucker had continued to appeal the importance of life-time employment, particularly in Japan, until his death in Nov 2005. The author's expression of Drucker's proof (hereunder, Drucker's expression) is the following:

The author $(350,1965)$ expressed the formula of break-even point (BEP), $X=F /(1-v)$, by a hyperbola, $1=\frac{f}{1-v}$, where $\mathrm{v}=V / X$ and $f=1-v$. The BEP hyperbola is an identity and no one cannot deny. BEP hyperbola prevails not only in corporate analysis in enterprises but also in macro analysis. A System of National Accounts (SNA, 1993, 2008), however, cannot introduce the BEP hyperbola into the SNA. When national disposable net income is measured by $Y=C+S=W+\Pi$ over years, the BEP hyperbola holds, as proved in this section. The difference between micro and macro is external expenses, $E=X-Y$. In the case of life-time employment, $F=W$ and $V=E$ hold so that $X=W+E+\Pi=F+V+\Pi$. In the case of part-timer economy, $X=(W+E)+\Pi=V+\Pi$ holds:

[^4]
## Why is A Discrete Cobb-Douglas Production Function A Numerical Core of Social and Economic Science?

For example, the BEP rises up to 1.5837 if $f=0.4500 \gg 1.0000$ and, further rises up to 7.9185 if $f=0.0900 \gg 1.0000$. Let us compare Tables 4-1 (the US) and 5-1 (Japan) before adjustment with Tables 4-2 (the US) and 5-2 (Japan) after adjustment of the variable expenses.

The above results indicate a fact that the higher the fixed expenses to net sales, the less the rate of return. This fact is another expression of value added per capita=the ratio of value added to net sales multiplied by net sales per capita; productivity or value added per capita $=y=\frac{Y}{L}=\frac{Y}{X} \cdot \frac{X}{L}$. In the case of the macro level, the same $\mathrm{y}=Y / L$ holds due to no reduction or $Y=X$.

The author finds three endogenous principles in the expressions of the Drucker BEP under purely endogenous as follows:
$1^{\text {st }}$ : There is no measure difference between micro and macro since external expenses are offset, as shown above.
$2^{\text {nd }}$ : There is no measure difference between with per capita and without per capita. This is because the number of population/workers is wholly offset in the Drucker BEP.
$3^{\text {rd }}$ : In the transitional path, average=marginal or productivity as value added per capita is constant by time/year, before and after the convergence point of time, as proved by recursive programming in a separate paper.

When actual data (double-entry bookkeeping accounts, statistics data, and external data) are used for Drucker's expression, the $2^{\text {nd }}$ principle does not hold (see a paper presented to IAES Conference, Madrid, 2014). Nevertheless, actual data are always within a certain range of endogenous data, as proved purely endogenously with no assumption and under perfect competition. There is much room for cooperative researches between macro and micro (enterprises), including the application of Drucker's expression to enterprise sector after redistribution of taxes. For example, the relationship between average and marginal of economic activities is often shown illustratively in the literature, often using combination of two different parabolas. This illustration is numerically clarified when listed company data are using for the Drucker's expression.

## Chapter 5, HEU

## 6. Conclusions

This chapter develops foundation of the C-D PF in economic and econometrics analyses. The essence of the EES (theory) and its KEWT database (practice, where theory=practice) is robust and strictly clarifies true meaning of assumptions in the literature. Indispensable limit is shown not only in Bliss Christopher $(1999,2000)$ but also in any of economic and econometrics analyses. Economics methodology under the market differs from mathematics, setting aside behavior science and politics.

Among others, this chapter essentially develops unsolved but indispensable problems lying between Euler's theorem and the C-D Production Function. Nevertheless, the author's true intention is never against new progresses in econometrics but respects their fruits. The author sincerely proposes cooperative joint work between 'economic/ econometric statistics data analyses and methodology' and 'the EES and KEWT database under no assumption.'

One more is this: Economic analysis has developed with the C-D PF, with the stream of micro to macro and based on individual utility, which was boldly reviewed by Paul Samuelson before and after in the 1940s. If assumptions had been strictly applied to statistics analysis, a brave consensus that macro must be a base for micro had prevailed earlier. The EES proposed macro-utility as the relative discount rates functioning between consumer and producers goods. The author developed this fact more precisely in a separate chapter.

## Why is A Discrete Cobb-Douglas Production Function A Numerical Core of Social and Economic Science?

Table 1 Recursive programming of technology-stock=A*=TFP* and the speed years for convergence: 12 countries

| country | 1. the US | 2. Japan | 3. Australia | 4. France | 5. Germany | 6. the UK | 7. China | 8. India | 9. Brazil | 10. Mexico | 11. Russia | 12. S Africa |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| speed years | 110.19 | 107.87 | 28.27 | 62.98 | 85.77 | 123.38 | 24.81 | 21.56 | 20.53 | 20.31 | (2.89) | 25.19 |
|  | $\mathrm{A}^{*}=\mathrm{TFP}^{*}$ | $\mathrm{A}^{*}=$ TFP $^{*}$ |
|  | 23.98 | 55810 | 61.01 | 34.08 | 109.83 | 21.18 | 8.02 | 44.90 | 0.96 | 74.54 | 73.25 | 68.73 |
| time, t |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 | 18.247 | 1322 | 32.817 | 16.829 | 18.677 | 11.811 | 2.517 | 22.558 | 0.221 | 39.682 | 73.248 | 32.402 |
| 1 | 18.255 | 1340 | 33.137 | 16.911 | 18.953 | 11.828 | 2.544 | 22.799 | 0.241 | 40.175 | 73.248 | 32.773 |
| 2 | 18.264 | 1358 | 33.483 | 16.996 | 19.235 | 11.845 | 2.583 | 23.068 | 0.262 | 40.730 | 73.248 | 33.184 |
| 3 | 18.272 | 1376 | 33.858 | 17.083 | 19.523 | 11.862 | 2.633 | 23.369 | 0.284 | 41.354 | 73.248 | 33.639 |
| 4 | 18.281 | 1395 | 34.262 | 17.174 | 19.816 | 11.880 | 2.695 | 23.707 | 0.307 | 42.053 | 73.248 | 34.143 |
| 5 | 18.290 | 1415 | 34.698 | 17.268 | 20.116 | 11.898 | 2.769 | 24.085 | 0.331 | 42.836 | \#NUM! | 34.699 |
| 6 | 18.300 | 1435 | 35.169 | 17.365 | 20.422 | 11.916 | 2.857 | 24.508 | 0.357 | 43.711 | \#NUM! | 35.314 |
| 7 | 18.310 | 1456 | 35.677 | 17.465 | 20.735 | 11.935 | 2.957 | 24.981 | 0.384 | 44.688 | \#NUM! | 35.991 |
| 8 | 18.320 | 1477 | 36.224 | 17.568 | 21.054 | 11.954 | 3.071 | 25.511 | 0.412 | 45.778 | \#NUM! | 36.737 |
| 9 | 18.331 | 1499 | 36.812 | 17.675 | 21.381 | 11.974 | 3.200 | 26.104 | 0.442 | 46.993 | \#NUM! | 37.557 |
| 10 | 18.342 | 1522 | 37.445 | 17.786 | 21.714 | 11.994 | 3.345 | 26.768 | 0.473 | 48.348 | \#NUM! | 38.459 |
| 11 | 18.353 | 1546 | 38.125 | 17.901 | 22.055 | 12.015 | 3.505 | 27.510 | 0.506 | 49.859 | \#NUM! | 39.450 |
| 12 | 18.365 | 1570 | 38.855 | 18.019 | 22.403 | 12.036 | 3.683 | 28.340 | 0.541 | 51.543 | \#NUM! | 40.536 |
| 13 | 18.377 | 1595 | 39.640 | 18.141 | 22.758 | 12.057 | 3.879 | 29.270 | 0.578 | 53.422 | \#NUM! | 41.727 |
| 14 | 18.390 | 1620 | 40.481 | 18.268 | 23.122 | 12.079 | 4.094 | 30.311 | 0.617 | 55.518 | \#NUM! | 43.032 |
| 15 | 18.403 | 1647 | 41.383 | 18.398 | 23.493 | 12.102 | 4.329 | 31.478 | 0.658 | 57.861 | \#NUM! | 44.462 |
| 16 | 18.416 | 1674 | 42.351 | 18.534 | 23.873 | 12.125 | 4.585 | 32.787 | 0.701 | 60.479 | \#NUM! | 46.026 |
| 17 | 18.430 | 1702 | 43.387 | 18.673 | 24.262 | 12.148 | 4.864 | 34.256 | 0.746 | 63.411 | \#NUM! | 47.738 |
| 18 | 18.444 | 1731 | 44.498 | 18.818 | 24.659 | 12.172 | 5.167 | 35.907 | 0.795 | 66.698 | \#NUM! | 49.611 |
| 19 | 18.459 | 1761 | 45.688 | 18.967 | 25.066 | 12.196 | 5.494 | 37.765 | 0.846 | 70.390 | \#NUM! | 51.660 |
| 20 | 18.474 | 1791 | 46.962 | 19.122 | 25.481 | 12.221 | 5.846 | 39.860 | 0.900 | 74.542 | \#NUM! | 53.902 |
| 21 | 18.490 | 1823 | 48.327 | 19.281 | 25.907 | 12.247 | 6.225 | 42.226 | 0.957 | 79.223 | \#NUM! | 56.355 |
| 22 | 18.506 | 1856 | 49.788 | 19.446 | 26.342 | 12.273 | 6.632 | 44.904 | 1.018 | 84.512 | \#NUM! | 59.040 |
| 23 | 18.523 | 1890 | 51.353 | 19.616 | 26.787 | 12.300 | 7.066 | 47.940 | 1.083 | 90.502 | \#NUM! | 61.979 |
| 24 | 18.540 | 1925 | 53.028 | 19.793 | 27.243 | 12.327 | 7.529 | 51.392 | 1.151 | 97.303 | \#NUM! | 65.199 |
| 25 | 18.558 | 1961 | 54.822 | 19.975 | 27.710 | 12.355 | 8.020 | 55.326 | 1.224 | 105.05 | \#NUM! | 68.727 |
| 26 | 18.577 | 1998 | 56.743 | 20.163 | 28.188 | 12.384 | 8.541 | 59.822 | 1.302 | 113.89 | \#NUM! | 72.595 |
| 27 | 18.595 | 2037 | 58.802 | 20.357 | 28.677 | 12.413 | 9.090 | 64.978 | 1.384 | 124.03 | \#NUM! | 76.840 |
| 28 | 18.615 | 2077 | 61.007 | 20.558 | 29.178 | 12.442 | 9.667 | 70.908 | 1.472 | 135.68 | \#NUM! | 81.501 |
| 29 | 18.635 | 2118 | 63.370 | 20.766 | 29.692 | 12.473 | 10.271 | 77.755 | 1.565 | 149.13 | \#NUM! | 86.622 |
| 30 | 18.656 | 2161 | 65.903 | 20.981 | 30.218 | 12.504 | 10.902 | 85.687 | 1.665 | 164.71 | \#NUM! | 92.255 |
| 31 | 18.677 | 2205 | 68.620 | 21.203 | 30.757 | 12.536 | 11.558 | 94.916 | 1.771 | 182.84 | \#NUM! | 98.455 |
| 32 | 18.699 | 2251 | 71.534 | 21.432 | 31.310 | 12.568 | 12.236 | 105.70 | 1.884 | 204.01 | \#NUM! | 105.29 |
| 33 | 18.722 | 2298 | 74.662 | 21.669 | 31.877 | 12.601 | 12.936 | 118.35 | 2.004 | 228.86 | \#NUM! | 112.82 |
| 34 | 18.745 | 2347 | 78.019 | 21.914 | 32.458 | 12.635 | 13.654 | 133.28 | 2.133 | 258.16 | \#NUM! | 121.15 |
| 35 | 18.769 | 2398 | 81.626 | 22.167 | 33.054 | 12.670 | 14.388 | 150.96 | 2.271 | 292.90 | \#NUM! | 130.35 |
| 36 | 18.794 | 2451 | 85.502 | 22.428 | 33.665 | 12.705 | 15.135 | 172.04 | 2.418 | 334.29 | \#NUM! | 140.53 |
| 37 | 18.819 | 2505 | 89.670 | 22.699 | 34.293 | 12.741 | 15.892 | 197.30 | 2.575 | 383.91 | \#NUM! | 151.82 |
| 38 | 18.845 | 2562 | 94.153 | 22.978 | 34.936 | 12.778 | 16.656 | 227.76 | 2.743 | 443.73 | \#NUM! | 164.34 |
| 39 | 18.872 | 2621 | 98.980 | 23.267 | 35.597 | 12.815 | 17.422 | 264.72 | 2.923 | 516.31 | \#NUM! | 178.26 |
| 40 | 18.900 | 2682 | 104.179 | 23.565 | 36.276 | 12.854 | 18.189 | 309.88 | 3.115 | 604.98 | \#NUM! | 193.75 |
| 41 | 18.928 | 2745 | 109.783 | 23.874 | 36.973 | 12.893 | 18.951 | 365.46 | 3.321 | 714.06 | \#NUM! | 211.00 |
| 42 | 18.957 | 2811 | 115.827 | 24.193 | 37.689 | 12.933 | 19.707 | 434.40 | 3.542 | 849.27 | \#NUM! | 230.26 |
| 43 | 18.987 | 2879 | 122.350 | 24.522 | 38.424 | 12.974 | 20.452 | 520.62 | 3.778 | 1018 | \#NUM! | 251.78 |
| 44 | 19.018 | 2950 | 129.395 | 24.863 | 39.180 | 13.016 | 21.184 | 629.38 | 4.032 | 1231 | \#NUM! | 275.87 |
| 45 | 19.049 | 3023 | 137.011 | 25.215 | 39.958 | 13.058 | 21.899 | 767.90 | 4.304 | 1502 | \#NUM! | 302.88 |
| 46 | 19.082 | 3100 | 145.248 | 25.579 | 40.757 | 13.102 | 22.596 | 946.10 | 4.595 | 1850 | \#NUM! | 333.21 |
| 47 | 19.115 | 3180 | 154.166 | 25.956 | 41.579 | 13.146 | 23.271 | 1178 | 4.908 | 2301 | \#NUM! | 367.32 |
| 48 | 19.149 | 3263 | 163.827 | 26.345 | 42.425 | 13.192 | 23.922 | 1483 | 5.245 | 2892 | \#NUM! | 405.76 |
| 49 | 19.185 | 3350 | 174.303 | 26.748 | 43.295 | 13.238 | 24.549 | 1889 | 5.606 | 3678 | \#NUM! | 449.15 |
| 50 | 19.221 | 3440 | 185.672 | 27.164 | 44.191 | 13.285 | 25.149 | 2438 | 5.994 | 4734 | \#NUM! | 498.22 |
| 51 | 19.258 | 3534 | 198.021 | 27.594 | 45.114 | 13.334 | 25.721 | 3190 | 6.411 | 6174 | \#NUM! | 553.81 |
| 52 | 19.296 | 3632 | 211.446 | 28.039 | 46.065 | 13.383 | 26.265 | 4237 | 6.860 | 8166 | \#NUM! | 616.91 |
| 53 | 19.335 | 3735 | 226.055 | 28.500 | 47.045 | 13.433 | 26.780 | 5721 | 7.342 | 10968 | \#NUM! | 688.67 |
| 54 | 19.375 | 3842 | 241.966 | 28.976 | 48.055 | 13.485 | 27.265 | 7866 | 7.862 | 14978 | \#NUM! | 770.44 |
| 55 | 19.416 | 3953 | 259.313 | 29.469 | 49.096 | 13.537 | 27.722 | 11028 | 8.421 | 20828 | \#NUM! | 863.82 |
| 56 | 19.458 | 4070 | 278.243 | 29.979 | 50.171 | 13.590 | 28.150 | 15802 | 9.023 | 29541 | \#NUM! | 970.67 |
| 57 | 19.501 | 4192 | 298.921 | 30.507 | 51.279 | 13.645 | 28.550 | 23192 | 9.671 | 42820 | \#NUM! | 1093 |
| 58 | 19.545 | 4320 | 321.532 | 31.053 | 52.424 | 13.701 | 28.922 | 34959 | 10.370 | 63575 | \#NUM! | 1234 |
| 59 | 19.590 | 4454 | 346.282 | 31.618 | 53.606 | 13.758 | 29.267 | 54294 | 11.123 | 96927 | \#NUM! | 1396 |
| 60 | 19.637 | 4594 | 373.402 | 32.203 | 54.827 | 13.816 | 29.587 | 87194 | 11.936 | 152199 | \#NUM! | 1583 |
| 61 | 19.684 | 4741 | 403.150 | 32.808 | 56.089 | 13.875 | 29.882 | 145429 | 12.812 | 246993 | \#NUM! | 1800 |
| 62 | 19.733 | 4895 | 435.819 | 33.435 | 57.394 | 13.935 | 30.153 | 253195 | 13.757 | 415917 | \#NUM! | 2051 |
| 63 | 19.783 | 5057 | 471.734 | 34.084 | 58.743 | 13.997 | 30.402 | 462957 | 14.777 | 730168 | \#NUM! | 2344 |
| 64 | 19.834 | 5227 | 511.264 | 34.756 | 60.140 | 14.060 | 30.630 | 895504 | 15.878 | 1343835 | \#NUM! | 2684 |
| 65 | 19.886 | 5406 | 554.821 | 35.453 | 61.587 | 14.124 | 30.838 | 1848608 | 17.067 | 2609964 | \#NUM! | 3083 |

Data source: KEWT 7.13, 1960/90-2011 by sector, for 86 countries, whose original data are from $I F S Y$, IMF.

## Chapter 5, HEU

Table 2 Recursive programming of technology-flow and technology-stock=A=TFP, each by Hicks, Solow, and Harrod, in the transitional path: the US 2010

| speed years | FLOW | three sorts of tech Neutrality |  |  | $\begin{gathered} \text { STOCK } \\ \text { the US } \end{gathered}$ | three sorts of tech Neutrality |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110.19 | the US | Hick | Solow | Harrod |  |  |  |  |
| at converge | 0.00590 | 0.00590 | 0.00476 | 0.00114 | 23.982 | 23.982 | 51.239 | 27.257 |
|  | $\mathrm{m}=\mathrm{g}_{\text {A(FLOW }}$ | $\mathrm{N}_{\text {EUT }}=\mathrm{m}$ | $\mathrm{N}_{\text {EUT }}=\mathrm{m}(1-\alpha)$ | $\mathrm{N}_{\text {EUT }}=\mathrm{ma}$ | Hicks's A | Solow's A | Harrod'A | differ=H-S |
| 0 | 0.00318 | 0.00318 | 0.00256 | 0.00061 | 18.247 | 18.247 | 36.522 | 18.275 |
| 1 | 0.00320 | 0.00320 | 0.00259 | 0.00062 | 18.255 | 18.255 | 36.542 | 18.287 |
| 2 | 0.00323 | 0.00323 | 0.00261 | 0.00062 | 18.264 | 18.264 | 36.563 | 18.299 |
| 3 | 0.00325 | 0.00325 | 0.00263 | 0.00063 | 18.272 | 18.272 | 36.584 | 18.312 |
| 4 | 0.00328 | 0.00328 | 0.00265 | 0.00063 | 18.281 | 18.281 | 36.606 | 18.325 |
| 5 | 0.00331 | 0.00331 | 0.00267 | 0.00064 | 18.290 | 18.290 | 36.629 | 18.339 |
| 6 | 0.00333 | 0.00333 | 0.00269 | 0.00064 | 18.300 | 18.300 | 36.653 | 18.353 |
| 7 | 0.00336 | 0.00336 | 0.00271 | 0.00065 | 18.310 | 18.310 | 36.678 | 18.368 |
| 8 | 0.00338 | 0.00338 | 0.00273 | 0.00065 | 18.320 | 18.320 | 36.703 | 18.383 |
| 9 | 0.00341 | 0.00341 | 0.00275 | 0.00066 | 18.331 | 18.331 | 36.730 | 18.399 |
| 10 | 0.00344 | 0.00344 | 0.00277 | 0.00066 | 18.342 | 18.342 | 36.757 | 18.415 |
| 11 | 0.00346 | 0.00346 | 0.00279 | 0.00067 | 18.353 | 18.353 | 36.785 | 18.432 |
| 12 | 0.00349 | 0.00349 | 0.00281 | 0.00067 | 18.365 | 18.365 | 36.814 | 18.449 |
| 13 | 0.00351 | 0.00351 | 0.00284 | 0.00068 | 18.377 | 18.377 | 36.844 | 18.467 |
| 14 | 0.00354 | 0.00354 | 0.00286 | 0.00068 | 18.390 | 18.390 | 36.876 | 18.486 |
| 15 | 0.00356 | 0.00356 | 0.00288 | 0.00069 | 18.403 | 18.403 | 36.908 | 18.505 |
| 16 | 0.00359 | 0.00359 | 0.00290 | 0.00069 | 18.416 | 18.416 | 36.941 | 18.525 |
| 17 | 0.00362 | 0.00362 | 0.00292 | 0.00070 | 18.430 | 18.430 | 36.976 | 18.546 |
| 18 | 0.00364 | 0.00364 | 0.00294 | 0.00070 | 18.444 | 18.444 | 37.011 | 18.567 |
| 19 | 0.00367 | 0.00367 | 0.00296 | 0.00071 | 18.459 | 18.459 | 37.048 | 18.589 |
| 20 | 0.00369 | 0.00369 | 0.00298 | 0.00071 | 18.474 | 18.474 | 37.086 | 18.612 |
| 21 | 0.00372 | 0.00372 | 0.00300 | 0.00072 | 18.490 | 18.490 | 37.125 | 18.635 |
| 22 | 0.00374 | 0.00374 | 0.00302 | 0.00072 | 18.506 | 18.506 | 37.166 | 18.659 |
| 23 | 0.00377 | 0.00377 | 0.00304 | 0.00073 | 18.523 | 18.523 | 37.207 | 18.684 |
| 24 | 0.00379 | 0.00379 | 0.00306 | 0.00073 | 18.540 | 18.540 | 37.250 | 18.710 |
| 25 | 0.00382 | 0.00382 | 0.00308 | 0.00074 | 18.558 | 18.558 | 37.295 | 18.737 |
| 26 | 0.00384 | 0.00384 | 0.00310 | 0.00074 | 18.577 | 18.577 | 37.340 | 18.764 |
| 27 | 0.00387 | 0.00387 | 0.00312 | 0.00075 | 18.595 | 18.595 | 37.388 | 18.792 |
| 28 | 0.00390 | 0.00390 | 0.00314 | 0.00075 | 18.615 | 18.615 | 37.436 | 18.821 |
| 29 | 0.00392 | 0.00392 | 0.00316 | 0.00076 | 18.635 | 18.635 | 37.486 | 18.851 |
| 30 | 0.00395 | 0.00395 | 0.00319 | 0.00076 | 18.656 | 18.656 | 37.538 | 18.882 |
| 31 | 0.00397 | 0.00397 | 0.00321 | 0.00077 | 18.677 | 18.677 | 37.591 | 18.914 |
| 32 | 0.00400 | 0.00400 | 0.00323 | 0.00077 | 18.699 | 18.699 | 37.646 | 18.947 |
| 33 | 0.00402 | 0.00402 | 0.00325 | 0.00078 | 18.722 | 18.722 | 37.702 | 18.981 |
| 34 | 0.00405 | 0.00405 | 0.00327 | 0.00078 | 18.745 | 18.745 | 37.761 | 19.015 |
| 35 | 0.00407 | 0.00407 | 0.00329 | 0.00079 | 18.769 | 18.769 | 37.820 | 19.051 |
| 36 | 0.00410 | 0.00410 | 0.00331 | 0.00079 | 18.794 | 18.794 | 37.882 | 19.088 |
| 37 | 0.00412 | 0.00412 | 0.00333 | 0.00080 | 18.819 | 18.819 | 37.945 | 19.126 |
| 38 | 0.00415 | 0.00415 | 0.00335 | 0.00080 | 18.845 | 18.845 | 38.010 | 19.165 |
| 39 | 0.00417 | 0.00417 | 0.00337 | 0.00080 | 18.872 | 18.872 | 38.077 | 19.206 |
| 40 | 0.00420 | 0.00420 | 0.00339 | 0.00081 | 18.900 | 18.900 | 38.146 | 19.247 |
| 41 | 0.00422 | 0.00422 | 0.00341 | 0.00081 | 18.928 | 18.928 | 38.217 | 19.289 |
| 42 | 0.00425 | 0.00425 | 0.00343 | 0.00082 | 18.957 | 18.957 | 38.290 | 19.333 |
| 43 | 0.00427 | 0.00427 | 0.00345 | 0.00082 | 18.987 | 18.987 | 38.365 | 19.378 |
| 44 | 0.00430 | 0.00430 | 0.00347 | 0.00083 | 19.018 | 19.018 | 38.442 | 19.425 |
| 45 | 0.00432 | 0.00432 | 0.00349 | 0.00083 | 19.049 | 19.049 | 38.521 | 19.472 |
| 46 | 0.00435 | 0.00435 | 0.00351 | 0.00084 | 19.082 | 19.082 | 38.603 | 19.521 |
| 47 | 0.00437 | 0.00437 | 0.00353 | 0.00084 | 19.115 | 19.115 | 38.686 | 19.571 |
| 48 | 0.00440 | 0.00440 | 0.00355 | 0.00085 | 19.149 | 19.149 | 38.772 | 19.623 |
| 49 | 0.00442 | 0.00442 | 0.00357 | 0.00085 | 19.185 | 19.185 | 38.860 | 19.676 |
| 50 | 0.00445 | 0.00445 | 0.00359 | 0.00086 | 19.221 | 19.221 | 38.951 | 19.730 |
| 51 | 0.00447 | 0.00447 | 0.00361 | 0.00086 | 19.258 | 19.258 | 39.044 | 19.786 |
| 52 | 0.00450 | 0.00450 | 0.00363 | 0.00087 | 19.296 | 19.296 | 39.139 | 19.844 |
| 53 | 0.00452 | 0.00452 | 0.00365 | 0.00087 | 19.335 | 19.335 | 39.237 | 19.903 |
| 54 | 0.00455 | 0.00455 | 0.00367 | 0.00088 | 19.375 | 19.375 | 39.338 | 19.963 |
| 55 | 0.00457 | 0.00457 | 0.00369 | 0.00088 | 19.416 | 19.416 | 39.441 | 20.025 |
| 56 | 0.00460 | 0.00460 | 0.00371 | 0.00089 | 19.458 | 19.458 | 39.547 | 20.089 |
| 57 | 0.00462 | 0.00462 | 0.00373 | 0.00089 | 19.501 | 19.501 | 39.655 | 20.155 |
| 58 | 0.00465 | 0.00465 | 0.00375 | 0.00090 | 19.545 | 19.545 | 39.767 | 20.222 |
| 59 | 0.00467 | 0.00467 | 0.00377 | 0.00090 | 19.590 | 19.590 | 39.881 | 20.291 |
| 60 | 0.00470 | 0.00470 | 0.00379 | 0.00091 | 19.637 | 19.637 | 39.998 | 20.362 |
| 61 | 0.00472 | 0.00472 | 0.00381 | 0.00091 | 19.684 | 19.684 | 40.118 | 20.434 |
| 62 | 0.00475 | 0.00475 | 0.00383 | 0.00092 | 19.733 | 19.733 | 40.241 | 20.508 |
| 63 | 0.00477 | 0.00477 | 0.00385 | 0.00092 | 19.783 | 19.783 | 40.368 | 20.585 |
| 64 | 0.00479 | 0.00479 | 0.00387 | 0.00092 | 19.834 | 19.834 | 40.497 | 20.663 |
| 65 | 0.00482 | 0.00482 | 0.00389 | 0.00093 | 19.886 | 19.886 | 40.630 | 20.743 |

Data source: KEWT 7.13, 1960/90-2011 by sector, for 86 countries, whose original data are from IFSY, IMF.

# Why is A Discrete Cobb-Douglas Production Function A Numerical Core of Social and Economic Science? 

Table 3 Recursive programming of technology-flow and technology-stock=A=TFP, each by Hicks, Solow, and Harrod, in the transitional path: Japan 2010

| speed years | FLOW | three sorts of tech Neutrality |  |  | STOCK | three sorts of tech Neutrality |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 107.87 | Japan | Hick | Solow | Harrod | Japan |  |  |  |
| at converge | 0.01028 | 0.01028 | 0.00929 | 0.00099 | 55810 | 55810 | 178550 | 122740 |
|  | $\mathrm{m}=\mathrm{g}_{\text {A(FLOW }}$ | $\mathrm{N}_{\text {EUT }}=\mathbf{m}$ | $\mathrm{N}_{\text {EUT }}=\mathrm{m}(1-\alpha)$ | $\mathrm{N}_{\text {EUT }}=\mathrm{m} \alpha$ | Hicks's A | Solow's A | Harrod' A | differ $=\mathbf{H}-\mathrm{S}$ |
| 0 | 0.00471 | 0.00471 | 0.00426 | 0.00045 | 1322 | 1322 | 2841 | 1518 |
| 1 | 0.00477 | 0.00477 | 0.00431 | 0.00046 | 1340 | 1340 | 2882 | 1543 |
| 2 | 0.00482 | 0.00482 | 0.00436 | 0.00046 | 1358 | 1358 | 2925 | 1567 |
| 3 | 0.00488 | 0.00488 | 0.00441 | 0.00047 | 1376 | 1376 | 2969 | 1593 |
| 4 | 0.00493 | 0.00493 | 0.00446 | 0.00047 | 1395 | 1395 | 3015 | 1620 |
| 5 | 0.00499 | 0.00499 | 0.00451 | 0.00048 | 1415 | 1415 | 3062 | 1647 |
| 6 | 0.00504 | 0.00504 | 0.00456 | 0.00048 | 1435 | 1435 | 3110 | 1675 |
| 7 | 0.00510 | 0.00510 | 0.00461 | 0.00049 | 1456 | 1456 | 3160 | 1704 |
| 8 | 0.00515 | 0.00515 | 0.00466 | 0.00050 | 1477 | 1477 | 3212 | 1734 |
| 9 | 0.00521 | 0.00521 | 0.00470 | 0.00050 | 1499 | 1499 | 3265 | 1765 |
| 10 | 0.00526 | 0.00526 | 0.00475 | 0.00051 | 1522 | 1522 | 3320 | 1797 |
| 11 | 0.00531 | 0.00531 | 0.00480 | 0.00051 | 1546 | 1546 | 3376 | 1830 |
| 12 | 0.00537 | 0.00537 | 0.00485 | 0.00052 | 1570 | 1570 | 3434 | 1865 |
| 13 | 0.00542 | 0.00542 | 0.00490 | 0.00052 | 1595 | 1595 | 3495 | 1900 |
| 14 | 0.00548 | 0.00548 | 0.00495 | 0.00053 | 1620 | 1620 | 3557 | 1937 |
| 15 | 0.00553 | 0.00553 | 0.00500 | 0.00053 | 1647 | 1647 | 3621 | 1974 |
| 16 | 0.00559 | 0.00559 | 0.00505 | 0.00054 | 1674 | 1674 | 3687 | 2013 |
| 17 | 0.00564 | 0.00564 | 0.00510 | 0.00054 | 1702 | 1702 | 3756 | 2054 |
| 18 | 0.00569 | 0.00569 | 0.00515 | 0.00055 | 1731 | 1731 | 3826 | 2096 |
| 19 | 0.00575 | 0.00575 | 0.00519 | 0.00055 | 1761 | 1761 | 3899 | 2139 |
| 20 | 0.00580 | 0.00580 | 0.00524 | 0.00056 | 1791 | 1791 | 3975 | 2184 |
| 21 | 0.00586 | 0.00586 | 0.00529 | 0.00056 | 1823 | 1823 | 4053 | 2230 |
| 22 | 0.00591 | 0.00591 | 0.00534 | 0.00057 | 1856 | 1856 | 4134 | 2278 |
| 23 | 0.00596 | 0.00596 | 0.00539 | 0.00057 | 1890 | 1890 | 4218 | 2328 |
| 24 | 0.00602 | 0.00602 | 0.00544 | 0.00058 | 1925 | 1925 | 4304 | 2379 |
| 25 | 0.00607 | 0.00607 | 0.00549 | 0.00058 | 1961 | 1961 | 4394 | 2433 |
| 26 | 0.00612 | 0.00612 | 0.00553 | 0.00059 | 1998 | 1998 | 4486 | 2488 |
| 27 | 0.00618 | 0.00618 | 0.00558 | 0.00059 | 2037 | 2037 | 4582 | 2545 |
| 28 | 0.00623 | 0.00623 | 0.00563 | 0.00060 | 2077 | 2077 | 4682 | 2605 |
| 29 | 0.00628 | 0.00628 | 0.00568 | 0.00060 | 2118 | 2118 | 4785 | 2667 |
| 30 | 0.00634 | 0.00634 | 0.00573 | 0.00061 | 2161 | 2161 | 4892 | 2731 |
| 31 | 0.00639 | 0.00639 | 0.00577 | 0.00061 | 2205 | 2205 | 5003 | 2797 |
| 32 | 0.00644 | 0.00644 | 0.00582 | 0.00062 | 2251 | 2251 | 5117 | 2867 |
| 33 | 0.00649 | 0.00649 | 0.00587 | 0.00062 | 2298 | 2298 | 5237 | 2938 |
| 34 | 0.00655 | 0.00655 | 0.00592 | 0.00063 | 2347 | 2347 | 5360 | 3013 |
| 35 | 0.00660 | 0.00660 | 0.00597 | 0.00063 | 2398 | 2398 | 5489 | 3091 |
| 36 | 0.00665 | 0.00665 | 0.00601 | 0.00064 | 2451 | 2451 | 5622 | 3172 |
| 37 | 0.00671 | 0.00671 | 0.00606 | 0.00064 | 2505 | 2505 | 5761 | 3256 |
| 38 | 0.00676 | 0.00676 | 0.00611 | 0.00065 | 2562 | 2562 | 5905 | 3343 |
| 39 | 0.00681 | 0.00681 | 0.00616 | 0.00066 | 2621 | 2621 | 6055 | 3435 |
| 40 | 0.00686 | 0.00686 | 0.00620 | 0.00066 | 2682 | 2682 | 6211 | 3530 |
| 41 | 0.00692 | 0.00692 | 0.00625 | 0.00067 | 2745 | 2745 | 6373 | 3629 |
| 42 | 0.00697 | 0.00697 | 0.00630 | 0.00067 | 2811 | 2811 | 6542 | 3732 |
| 43 | 0.00702 | 0.00702 | 0.00635 | 0.00068 | 2879 | 2879 | 6718 | 3840 |
| 44 | 0.00707 | 0.00707 | 0.00639 | 0.00068 | 2950 | 2950 | 6902 | 3952 |
| 45 | 0.00712 | 0.00712 | 0.00644 | 0.00069 | 3023 | 3023 | 7093 | 4070 |
| 46 | 0.00718 | 0.00718 | 0.00649 | 0.00069 | 3100 | 3100 | 7292 | 4192 |
| 47 | 0.00723 | 0.00723 | 0.00653 | 0.00070 | 3180 | 3180 | 7501 | 4320 |
| 48 | 0.00728 | 0.00728 | 0.00658 | 0.00070 | 3263 | 3263 | 7718 | 4455 |
| 49 | 0.00733 | 0.00733 | 0.00663 | 0.00071 | 3350 | 3350 | 7945 | 4595 |
| 50 | 0.00738 | 0.00738 | 0.00667 | 0.00071 | 3440 | 3440 | 8182 | 4742 |
| 51 | 0.00744 | 0.00744 | 0.00672 | 0.00072 | 3534 | 3534 | 8430 | 4896 |
| 52 | 0.00749 | 0.00749 | 0.00677 | 0.00072 | 3632 | 3632 | 8689 | 5057 |
| 53 | 0.00754 | 0.00754 | 0.00681 | 0.00073 | 3735 | 3735 | 8960 | 5226 |
| 54 | 0.00759 | 0.00759 | 0.00686 | 0.00073 | 3842 | 3842 | 9245 | 5403 |
| 55 | 0.00764 | 0.00764 | 0.00691 | 0.00073 | 3953 | 3953 | 9543 | 5589 |
| 56 | 0.00769 | 0.00769 | 0.00695 | 0.00074 | 4070 | 4070 | 9855 | 5785 |
| 57 | 0.00775 | 0.00775 | 0.00700 | 0.00074 | 4192 | 4192 | 10183 | 5991 |
| 58 | 0.00780 | 0.00780 | 0.00705 | 0.00075 | 4320 | 4320 | 10527 | 6207 |
| 59 | 0.00785 | 0.00785 | 0.00709 | 0.00075 | 4454 | 4454 | 10888 | 6434 |
| 60 | 0.00790 | 0.00790 | 0.00714 | 0.00076 | 4594 | 4594 | 11268 | 6674 |
| 61 | 0.00795 | 0.00795 | 0.00719 | 0.00076 | 4741 | 4741 | 11667 | 6926 |
| 62 | 0.00800 | 0.00800 | 0.00723 | 0.00077 | 4895 | 4895 | 12088 | 7193 |
| 63 | 0.00805 | 0.00805 | 0.00728 | 0.00077 | 5057 | 5057 | 12531 | 7474 |
| 64 | 0.00810 | 0.00810 | 0.00732 | 0.00078 | 5227 | 5227 | 12998 | 7771 |
| 65 | 0.00815 | 0.00815 | 0.00737 | 0.00078 | 5406 | 5406 | 13490 | 8085 |

Data source: KEWT 7.13, 1960/90-2011 by sector, for 86 countries, whose original data are from IFSY, IMF.

## Chapter 5, HEU

Table 4-1 BEP in the C-D PF, from macro to micro: the US, before adjustment


Data source: KEWT 7.12, 1960/90-2010 by sector, for 86 countries, whose original data are from IFSY, IMF.

## Why is A Discrete Cobb-Douglas Production Function A Numerical Core of Social and Economic Science?

Table 4-2 BEP in the C-D PF, from macro to micro: the US, after adjustment


Data source: KEWT 7.12, 1960/90-2010 by sector, for 86 countries, whose original data are from IFSY, IMF.

## Chapter 5, HEU

Table 5-1 BEP in the C-D PF, from macro to micro: Japan, before adjustment


Data source: KEWT 7.12, 1960/90-2010 by sector, for 86 countries, whose original data are from IFSY, IMF.

## Why is A Discrete Cobb-Douglas Production Function A Numerical Core of Social and Economic Science?

Table 5-2 BEP in the C-D PF, from macro to micro: Japan, after adjustment


Data source: KEWT 7.12, 1960/90-2010 by sector, for 86 countries, whose original data are from IFSY, IMF.

## Chapter 5, $\boldsymbol{H E U}$



Figure 1 Recursive programming of technology-flow and technology-stock=A=TFP, each by Hicks, Solow, and Harrod, in the transitional path: five countries 2010

Data source: KEWT 7.13, 1960/90-2011 by sector, for 86 countries, whose original data are from IFSY, IMF.

## Why is A Discrete Cobb-Douglas Production Function

 A Numerical Core of Social and Economic Science?

Figure 2 Recursive programming of technology-flow and technology-stock=A=TFP, each by Hicks, Solow, and Harrod, in the transitional path: six countries 2010

Data source: KEWT 7.13, 1960/90-2011 by sector, for 86 countries, whose original data are from IFSY, IMF.

## Chapter 5, HEU




Figure 3 Growth rates of technology (SТоск) \& (FLOw) and the capital-labor:
8 Asian countries, 2010
Data source: KEWT 6.12, 1990-2010, 17 Asian countries, whose original data are from IFSY, IMF.

## Why is A Discrete Cobb-Douglas Production Function A Numerical Core of Social and Economic Science?



Figure 4 Simulation of elasticity of the capital-output ratio and the capital-labor ratio by country, with each speed years

Data source: Recursive programming by KEWT 6.12, 1990-2010, whose original data are from IFSY, IMF.

## Chapter 5, HEU



Figure 5 Structure analyses of seven endogenous parameters in recursive programming

Data source: KEWT 6.12, 1960/90-2010, for 81 countries, whose original data are from IFSY, IMF.

## Why is A Discrete Cobb-Douglas Production Function A Numerical Core of Social and Economic Science?



Figure 6 Growth rates of the capital-labor ratio and the capital-output ratio: Base area
Data source: Recursive programming of KEWT 6.12, whose original data from International Financial Statistics yearbook, IMF.

## Chapter 5, HEU



Figure 7 Growth rates of the capital-labor ratio and the capital-output ratio: Euro area
Data source: Recursive programming of KEWT 6.12, whose original data from International Financial Statistics yearbook, IMF.

# Why is A Discrete Cobb-Douglas Production Function 

 A Numerical Core of Social and Economic Science?

Figure 8 Growth rates of the capital-labor ratio and the capital-output ratio: Asian area
Data source: Recursive programming of KEWT 6.12, whose original data from International Financial Statistics yearbook, IMF.

## Chapter 5, HEU

## References

1. Alain, D. Ayong Le Kama. (2001). Sustainable Growth, Renewable Resources and Pollution. Journal of Economic Dynamics and Control 25 (Dec, 12): 1911-1918.
2. Bliss Christopher. (1999). Galton's Fallacy and Economic Convergence. Oxford Economic Papers 51 (1999): 4-14.
3. Bliss Christopher. (2000). Galton's Fallacy and Economic Convergence: A Reply to Cannon and Duck. Oxford Economic Papers 52 (2000): 420-422.
4. Dhrymes, P. J. (1962). On Devising Unbiased Estimators for the Parameters of the Cobb-Douglas Production Function. Econometrica 30 (2): 297-304.
5. Feng Wang and Andrew Mason. (2007). Population Ageing: Challenges, Opportunities, and Institutions, 177-196. In: Transition and Challenge: China's Population at the Beginning of the $21^{\text {st }}$ Century. Oxford and New York: Oxford University Press. xiv, 348p.
6. Feng Wang, and Andrew Mason. (2005). Demographic Dividend and Prospects for Economic Development in China, 1-18. United Nations Expert Group Meeting on Social and Economic Implications of changing Population Age Structures, Mexico (UN/POP/PD/2005/5).
7. Fisk, P. R. (1964). Estimation of Marginal Product from A Cobb-Douglas Production Function. Econometrica 32 (3): 451-451.
8. Fisk, P. R. (1966). Estimation of Marginal Product from A Cobb-Douglas Production Function. Econometrica 34 (1): 162-172.
9. Gabor, Dennis. (1971). Nobel Lecture, December 11, 1971. http://www.nobelprize.org/nobel_prizes/physics/laureates/1971/gabor-lecture.pdf .
10. Gallmeyer, Michael, F.; Hollifield, Burton; and Zin, Stanley, E. (2005). Taylor Rules, McCallum Rules and the Term Structure of Interest rates. Journal of Monetary Economics 52 (July, 5): 921-950.
11. Henry, George. (1898). The Land Question: What It Involves, and How Alone It Can Be Settled. New York: Doubleday \& McClure Co. 109 (The land Question) +74 $($ Property in Land) +151 (The Condition of Labor) $=334$.
12. Jorgenson, D.W., and Griliches, Z. (1967). The Explanation of Productivity Change. Review of Economic Studies 34 (June, 3): 249-283.
13. Jorgenson, Dale W. (1963). Capital Theory and Investment Behavior. American Economic Review: 53 (May, 2): 247-259.
14. Jorgenson, Dale W. (1966). The Embodiment Hypothesis. Journal of Political Economy 74 (Feb, 1): 1-17.
15. Kmenta, J. (1964). Some Properties of Alternative Estimates of the Cobb-Douglas Production Function. Econometrica 32 (1-2): 183-188.
16. Krugman, Paul. (4Nov2013). Those Depressing Germans (797 words). NY Times 3. http://www.nytimes.com/2013/11/04/opinion/krugman-those-depressing-germans.html

## Why is A Discrete Cobb-Douglas Production Function A Numerical Core of Social and Economic Science?

17. Meeusen, W., and J. Vandenbroeck. (1977). Efficiency Estimation from CobbDouglas Production Functions with Composed Error. International Economic Review 18 (2): 435-445.
18. Marshall, David, A. (2005). Comment on: "Estimating the expected marginal rate of substitution." Journal of Monetary Economics 52: 971-979.
19. Palivos. Theodore. (2001). Social norms, fertility and economic development. Journal of Economic Dynamics \& Control 25: 1919-1934.
20. Phelps, Edmund S. (1961). The Golden Rule of Accumulation, American Economic Review, 51 (Sep, 4): 638-643.
21. Phelps, Edmund S. (1965). Second Essay on the Golden Rule of Accumulation, American Economic Review, 55 (Sep, 4): 793-814.
22. Qiang, Dai, and Singleton, Kenneth, J. (2002). Expectation Puzzles, Time-Varying Risk Premia, and Affine Models of the Term Structure. Journal of Financial Economics 63 (March, 3): 415-441.
23. Salant, Walter, S. (1975). Introduction to William A. Salant's "Taxes, the Multiplier and the Inflationary Gap." History of Political Economy 7 (Spring, 1): 3-18.
24. Salant, Walter, S. (1975). The Balanced Budget Multiplier as the Sum of an Infinite Series. History of Political Economy 7 (Spring, 1): 28-31.
25. Samuelson, P. A. and Solow, R. M. (1956). A Complete Capital Model Involving Heterogeneous Capital Goods. Quarterly Journal of Economics 70 (Nov, 4): 537-562.
26. Samuelson, Paul, A. (1936-37). A Note on Measurement of Utility. Review of Economic Studies 4 (Feb., 2): 155-161.
27. Samuelson, Paul, A. (1967). Irving Fisher and the Theory of Capital, 17-37. In: Ten Economic Studies in the Tradition of Irving Fisher. New York, London, Sydney: John Wiley \& Sons, 284p.
28. Samuelson, Paul, P. (1975). The Balanced-Budget Multiplier: A Case Study in the Sociology and Psychology of Scientific Discovery. History of Political Economy 7 (Spring, 1): 43-55.
29. Wicksteed, Philip, H. (1938). The Common Sense of Political Economy and Selected Papers and Reviews on Economic Theory (II), 734-753 for review of Jevons's theory. London: George Routledge \& Sons, Ltd. 401-871.
30. Zellner, A., Kmenta, and J. Dreze, J. (1966). Specification and Estimation of Cobb-Douglas Production Function Modells. Econometrica 34 (4): 784-795.

[^0]:    ${ }^{1}$ Co-ordination, Prefatory Note, p. 4.
    ${ }^{2}$ Cf. Wicksell, loc. the Economic Journal, Dec1906, p. 189, and Chapman, loc. the Economic Journal, Dec 1906, p. 526.

[^1]:    1. Endogenous net investment to endogenous net income, $i=I / Y$.
    2. The rate of change in population, $n_{E}=n$.
    3. The relative share of capital, $\alpha=\Pi / Y$, where $\alpha=\Omega^{*} / r^{*}$.
    4. The capital-output ratio, $\Omega^{*}=K / Y$, (or, $\Omega^{*}=\frac{\beta^{*} \cdot i(1-\alpha)}{i\left(1-\beta^{*}\right)(1+n)+n(1-\alpha)}$ ).
    5. The technology coefficient (or the quantitative net investment coefficient), $\beta^{*}$, (or, $\beta^{*}=\frac{\Omega^{*}(n(1-\alpha)+i(1+n))}{i(1-\alpha)+\Omega^{*} \cdot i(1+n)}$.
    6. The diminishing returns to capital (DRC) coefficient. $\delta_{0}=1+L N\left(\Omega^{*}\right) / L N\left(\left(1-\beta^{*}\right) / \beta^{*}\right)$.
    7. Speed years for convergence, $1 / \lambda^{*}$, the speed coefficient, $\lambda^{*}=(1-\alpha) n+\left(1-\delta_{0}\right) g_{A}^{*}$, and $g_{A}^{*}=i\left(1-\beta^{*}\right)$.
[^2]:    ${ }^{4}$ Partial differentials calculated by the C-D PF differ from $\frac{\partial Y}{\partial A}=1.00000$ or $A=Y$ here.

    1. Hicks': $\frac{\partial Y}{\partial A}=K^{\alpha} L^{\beta}=1 L\left(\frac{K}{L}\right)^{\alpha}$, where partial difference is 1.0000 under $1=\alpha+\beta$.
    2. Solow's: $\frac{\partial Y}{\partial A}=\alpha A^{\alpha-1} K^{\alpha} L^{\beta}=2 A^{\alpha-1} L\left(\frac{K}{L}\right)^{\alpha}$, where partial difference is $2 A^{\alpha-1}$ under $1=\alpha+\beta$.
    3. Harrod's $\frac{\partial Y}{\partial A}=\beta A^{\beta-1} K^{\alpha} L^{\beta}=\beta A^{\beta-1} L\left(\frac{K}{L}\right)^{\alpha}$, where partial difference is $\beta A^{\beta-1}$ under $1=\alpha+\beta$.
[^3]:    ${ }^{5}$ Economists recall a fact that nominal consumption is stable or that by increasing consumption/sales tax rate, real consumption decreases so that Diffusion Index will aggravate. This remains partial interpretation. Simply, endogenous facts are: Tax cut and increase-subsidies are too short-sighted and unexpectedly destroy business trends. The wage rate turn adversely lower and spread inequality between rich and poor, resulting in unexpected shrimp of consumption. Growth and profit ratios never recover, as proved in the KEWT database series. Here dynamic balances hold, instantly, minute by minute, and always under the market principles.

[^4]:    ${ }^{6}$ Gabor, Dennis. (1971). Nobel Lecture, December 11, 1971. Social scientific discoveries apparently differ from natural scientific discoveries but, to the author's understanding, 'money' by country (as a world common scale) and the exchange rate prove 'holography' in the actual world.

